Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > University of Twente spin-off company develops spectacularly fast virus detector

Abstract:
Imagine being able to detect in just a few minutes whether someone is infected with a virus. This has now become a reality, thanks to a new ultra-sensitive detector that has been developed by Ostendum, a spin-off company of MESA+ Institute for Nanotechnology/University of Twente. The company has just completed the first prototype and expects to be able to introduce the first version of the detector onto the market in late 2010. Not only does the detector carry out measurements many times faster than do standard techniques, it is also portable, so it can be used anywhere. Ostendum's Aurel Ymeti (R&D director), Alma Dudia (Senior Researcher) and Paul Nederkoorn (CEO) claim that if they had the right antibodies to the swine flu at their disposal, they would be able to highlight the presence of the virus within five minutes. In addition to viruses, the device is also able to pick up bacteria, proteins and DNA molecules.

University of Twente spin-off company develops spectacularly fast virus detector

The Netherlands | Posted on May 28th, 2009

Following the outbreak of swine flu, the issue of finding a means of detecting quickly and simply whether someone is infected with a virus is again very much on the agenda. It is important to be able to do so as soon as possible in order to prevent the virus from spreading further. However, the techniques that are currently available do not yield results for several hours or even days. Moreover, the tests cannot be carried out without a laboratory or trained personnel.

Researchers at Ostendum, a spin-off company of the University of Twente, have developed a portable device that can show in five minutes whether or not a person is infected with a particular virus. The system is able to detect not only viruses, but also specific bacteria, proteins and DNA molecules, an increased or reduced concentration of which in a person's saliva may be an indication that they have one illness or another.

The only thing needed by the Ostendum detection method is a sample of saliva, blood or another body fluid from the person being tested and the availability of a specific receptor (i.e. a substance that binds with a specific micro-organism or biological substance). For example, in the case of a virus, a specific antibody served as a receptor on the chip and such antibody to that virus has to be available in order to be able to apply the underlying detection method.

Prototype

Ymeti demonstrated during his doctoral research in 2007 that the principle behind the detector worked. At the time, he used a fairly sizeable laboratory set-up. The Ostendum company was subsequently founded, in 2008, in order to develop the principle into a marketable product.

This week, the company completed the first prototype of the device, and it is presently working on two others. The three prototypes are undergoing practical tests, in a collaboration involving the Laboratorium Microbiologie Twente Achterhoek and the Zwanenberg Food Group. Ostendum will then make further improvements to the design of the device on the basis of the test results, and expects to have the first device ready for introduction to the marketplace in late 2010.

How it works

The device consists of two parts: a lab-on-a-chip-system and a portable detector. A lab-on-a-chip is a miniature laboratory the size of a chip. The chip contains tiny channels that are coated with receptors. The blood or saliva sample is transported to the channels with the help of a fluid system. Substances from the saliva or blood can then bind with the receptors on the chip. Light from a laser is guided through the channels. If any of the substances binds with the receptors in any of the channels, this will alter the phase of the light. Such a change will manifest itself in the interference pattern, and is a fingerprint of any viruses present, for example, or biomarkers. The method is highly sensitive: it is possible to measure the binding of a single virus particle.

####

Contacts:
The contact persons for the press are Aurel Ymeti (tel. +31 (0)53 489 3870 - Ostendum R&D) or Joost Bruysters (tel. +31 (0)53 489 2773 – for communication with the University of Twente).

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Possible Futures

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Nanomedicine

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Sensors

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent November 9th, 2017

Announcements

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Nanobiotechnology

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Drug-delivering nanoparticles seek and destroy elusive cancer stem cells November 28th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project