Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers to create next gen discs

Abstract:
Futuristic discs with a storage capacity 2,000 times that of current DVDs could be just around the corner, thanks to new research from Swinburne University of Technology.

For the first time researchers from the university's Centre for Micro-Photonics have demonstrated how nanotechnology can enable the creation of ‘five dimensional' discs with huge storage capacities.

Researchers to create next gen discs

Melbourne, Australia | Posted on May 20th, 2009

The research, carried out by Mr Peter Zijlstra, Dr James Chon and Professor Min Gu was published today in the scientific journal Nature.

The Nature article describes how the researchers were able to use nanoscopic particles to exponentially increase the amount of information contained on a single disc.

"We were able to show how nanostructured material can be incorporated onto a disc in order to increase data capacity, without increasing the physical size of the disc," Gu said.

Discs currently have three spatial dimensions, but using nanoparticles the Swinburne researchers were able to introduce a spectral - or colour - dimension as well as a polarisation dimension.

"These extra dimensions are the key to creating ultra-high capacity discs," Gu said.

To create the ‘colour dimension' the researchers inserted gold nanorods onto a disc's surface. Because nanoparticles react to light according to their shape, this allowed the researchers to record information in a range of different colour wavelengths on the same physical disc location.

This is a major improvement on current DVDs that are recorded in a single colour wavelength using a laser.

The researchers were also able to introduce an extra dimension onto the disc using polarisation. When they projected light waves onto the disc, the direction of the electric field contained within them aligned with the gold nanorods. This allowed the researchers to record different layers of information at different angles.

"The polarisation can be rotated 360 degrees," Chon said. "So for example, we were able to record at zero degree polarisation. Then on top of that, we were able to record another layer of information at 90 degrees polarisation, without them interfering with each other."

Some issues, such as the speed at which the discs can be written on, are yet to be resolved. However the researchers - who have already signed an agreement with Samsung - are confident the discs will be commercially available within 5 - 10 years.

The discs are likely to have immediate applications in a range of fields. They would be valuable for storing extremely large medical files such as MRIs and could also provide a boon in the financial, military and security arenas.

The researchers' ground breaking achievements would not have been possible without the long time support of the Australian Research Council.

####

For more information, please click here

Contacts:
Media Contact:
Crystal Ladiges
+61 3 9214 5064

Copyright © Swinburne University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Memory Technology

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Discoveries

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Photonics/Optics/Lasers

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

MIPT physicists predict the existence of unusual optical composites March 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project