Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers to create next gen discs

Abstract:
Futuristic discs with a storage capacity 2,000 times that of current DVDs could be just around the corner, thanks to new research from Swinburne University of Technology.

For the first time researchers from the university's Centre for Micro-Photonics have demonstrated how nanotechnology can enable the creation of ‘five dimensional' discs with huge storage capacities.

Researchers to create next gen discs

Melbourne, Australia | Posted on May 20th, 2009

The research, carried out by Mr Peter Zijlstra, Dr James Chon and Professor Min Gu was published today in the scientific journal Nature.

The Nature article describes how the researchers were able to use nanoscopic particles to exponentially increase the amount of information contained on a single disc.

"We were able to show how nanostructured material can be incorporated onto a disc in order to increase data capacity, without increasing the physical size of the disc," Gu said.

Discs currently have three spatial dimensions, but using nanoparticles the Swinburne researchers were able to introduce a spectral - or colour - dimension as well as a polarisation dimension.

"These extra dimensions are the key to creating ultra-high capacity discs," Gu said.

To create the ‘colour dimension' the researchers inserted gold nanorods onto a disc's surface. Because nanoparticles react to light according to their shape, this allowed the researchers to record information in a range of different colour wavelengths on the same physical disc location.

This is a major improvement on current DVDs that are recorded in a single colour wavelength using a laser.

The researchers were also able to introduce an extra dimension onto the disc using polarisation. When they projected light waves onto the disc, the direction of the electric field contained within them aligned with the gold nanorods. This allowed the researchers to record different layers of information at different angles.

"The polarisation can be rotated 360 degrees," Chon said. "So for example, we were able to record at zero degree polarisation. Then on top of that, we were able to record another layer of information at 90 degrees polarisation, without them interfering with each other."

Some issues, such as the speed at which the discs can be written on, are yet to be resolved. However the researchers - who have already signed an agreement with Samsung - are confident the discs will be commercially available within 5 - 10 years.

The discs are likely to have immediate applications in a range of fields. They would be valuable for storing extremely large medical files such as MRIs and could also provide a boon in the financial, military and security arenas.

The researchers' ground breaking achievements would not have been possible without the long time support of the Australian Research Council.

####

For more information, please click here

Contacts:
Media Contact:
Crystal Ladiges
+61 3 9214 5064

Copyright © Swinburne University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Memory Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Discoveries

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Announcements

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Photonics/Optics/Lasers

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE