Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New 'broadband' cloaking technology simple to manufacture

This image shows the design of a new type of invisibility cloak that is simpler than previous designs and works for all colors of the visible spectrum, making it possible to cloak larger objects than before and possibly leading to practical applications in "transformation optics." (Purdue University)
This image shows the design of a new type of invisibility cloak that is simpler than previous designs and works for all colors of the visible spectrum, making it possible to cloak larger objects than before and possibly leading to practical applications in "transformation optics." (Purdue University)

Abstract:
Anisotropic Metamaterials Emulated
by Tapered Waveguides:
Application to Optical Cloaking

Igor I. Smolyaninov1, Vera N. Smolyaninova2, Alexander V. Kildishev3, and Vladimir M. Shalaev3

1Advanced Technologies, BAE Systems, Washington, D.C.; 2Dept. of Physics Astronomy and Geosciences, Towson University; 3Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University

We demonstrate that metamaterial devices requiring anisotropic dielectric permittivity and magnetic permeability may be emulated by specially designed tapered waveguides. This approach leads to low-loss, broadband performance. Based on this technique, we demonstrate broadband electromagnetic cloaking in the visible frequency range on a scale ~100 times larger than the wavelength.

New 'broadband' cloaking technology simple to manufacture

WEST LAFAYETTE, IN | Posted on May 20th, 2009

Researchers have created a new type of invisibility cloak that is simpler than previous designs and works for all colors of the visible spectrum, making it possible to cloak larger objects than before and possibly leading to practical applications in "transformation optics."

Whereas previous cloaking designs have used exotic "metamaterials," which require complex nanofabrication, the new design is a far simpler device based on a "tapered optical waveguide," said Vladimir Shalaev, Purdue University's Robert and Anne Burnett Professor of Electrical and Computer Engineering.

Waveguides represent established technology - including fiber optics - used in communications and other commercial applications.

The research team used their specially tapered waveguide to cloak an area 100 times larger than the wavelengths of light shined by a laser into the device, an unprecedented achievement. Previous experiments with metamaterials have been limited to cloaking regions only a few times larger than the wavelengths of visible light.

Because the new method enabled the researchers to dramatically increase the cloaked area, the technology offers hope of cloaking larger objects, Shalaev said.

Findings are detailed in a research paper appearing May 29 in the journal Physical Review Letters. The paper was written by Igor I. Smolyaninov, a principal electronic engineer at BAE Systems in Washington, D.C.; Vera N. Smolyaninova, an assistant professor of physics at Towson University in Maryland; Alexander Kildishev, a principal research scientist at Purdue's Birck Nanotechnology Center; and Shalaev.

"All previous attempts at optical cloaking have involved very complicated nanofabrication of metamaterials containing many elements, which makes it very difficult to cloak large objects," Shalaev said. "Here, we showed that if a waveguide is tapered properly it acts like a sophisticated nanostructured material."

The waveguide is inherently broadband, meaning it could be used to cloak the full range of the visible light spectrum. Unlike metamaterials, which contain many light-absorbing metal components, only a small portion of the new design contains metal.

Theoretical work for the design was led by Purdue, with BAE Systems leading work to fabricate the device, which is formed by two gold-coated surfaces, one a curved lens and the other a flat sheet. The researchers cloaked an object about 50 microns in diameter, or roughly the width of a human hair, in the center of the waveguide.

"Instead of being reflected as normally would happen, the light flows around the object and shows up on the other side, like water flowing around a stone," Shalaev said.

The research falls within a new field called transformation optics, which may usher in a host of radical advances, including cloaking; powerful "hyperlenses" resulting in microscopes 10 times more powerful than today's and able to see objects as small as DNA; computers and consumer electronics that use light instead of electronic signals to process information; advanced sensors; and more efficient solar collectors.

Unlike natural materials, metamaterials are able to reduce the "index of refraction" to less than one or less than zero. Refraction occurs as electromagnetic waves, including light, bend when passing from one material into another. It causes the bent-stick-in-water effect, which occurs when a stick placed in a glass of water appears bent when viewed from the outside. Each material has its own refraction index, which describes how much light will bend in that particular material and defines how much the speed of light slows down while passing through a material.

Natural materials typically have refractive indices greater than one. Metamaterials, however, can be designed to make the index of refraction vary from zero to one, which is needed for cloaking.

The precisely tapered shape of the new waveguide alters the refractive index in the same way as metamaterials, gradually increasing the index from zero to 1 along the curved surface of the lens, Shalaev said.

Previous cloaking devices have been able to cloak only a single frequency of light, meaning many nested devices would be needed to render an object invisible.

Kildishev reasoned that the same nesting effect might be mimicked with the waveguide design. Subsequent experiments and theoretical modeling proved the concept correct.

Researchers do not know of any fundamental limit to the size of objects that could be cloaked, but additional work will be needed to further develop the technique.

Recent cloaking findings reported by researchers at other institutions have concentrated on a technique that camouflages features against a background. This work, which uses metamaterials, is akin to rendering bumps on a carpet invisible by allowing them to blend in with the carpet, whereas the Purdue-based work concentrates on enabling light to flow around an object.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Vladimir Shalaev
765-494-9855


Alexander V. Kildishev
765-494-0732


Purdue News Service:
(765) 494-2096

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX Technology Platform: Leading-edge I-fuse brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Discoveries

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Announcements

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX Technology Platform: Leading-edge I-fuse brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Military

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Graphene sheets capture cells efficiently: New method could enable pinpoint diagnostics on individual blood cells March 3rd, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Photonics/Optics/Lasers

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

MIPT physicists predict the existence of unusual optical composites March 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project