Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Carbon Sciences Announces Development Breakthroughs Shortening Path to Commercialization of Its CO2-to-Fuel Technology

Abstract:
Company's Recent Prototype Results and Computer Modeling Allow for Full Scale Pilot Design without Mini-Pilot Phase

Carbon Sciences Announces Development Breakthroughs Shortening Path to Commercialization of Its CO2-to-Fuel Technology

Santa Barbara, CA | Posted on May 19th, 2009

Carbon Sciences, Inc. (CABN), the developer of a breakthrough technology to recycle carbon dioxide (CO2) emissions into gasoline and other fuels, today announced significant technology development breakthroughs that shorten the path to commercializing its CO2-to-Fuel technology.

Previously, the company had planned on developing a mini-pilot plant as the next scale up of its CO2-to-Fuel technology, where additional performance data would be obtained in order to design a full scale commercial pilot plant. However, recent breakthroughs in the nano-engineering of the biocatalyst, encouraging prototype performance results and molecular based computer modeling of the biocatalytic process have provided the development team with a direct path to full scale pilot design.

Dr. Naveed Aslam, the company's CTO, explained, "Current state-of-the-art computer aided process engineering (CAPE) tools allow system designers to design industrial scale plants with a high degree of confidence, with respect to its real-world performance. However, CAPE tools require very good input data for the performance of proprietary processes, such as our biocatalytic CO2-to-Fuel process. In traditional chemical engineering, the performance data of a prototype, or bench top system, vary dramatically from that of the pilot plant. Therefore, engineers were required to build a medium scale, or mini-pilot plant, to fine-tune the process before gaining confidence in the performance of a full-scale design. Because our CO2-to-Fuel biocatalytic process is optimized as a nano-machine, its performance at a higher scale is very predictable. Recently, we have developed accurate low-level molecular models of our biocatalysts, based on prototype experiments, to drive the CAPE simulations of a full scale CO2-to-Fuel plant. We now believe that we can go straight from our prototype, to a CAPE tool, to a full scale pilot plant design for implementation by a strategic partner."

Commenting on this exciting development, company president, Byron Elton, said, "This breakthrough saves us the time and the capital required to develop a mini-pilot plant. We are honored and fortunate to have Dr. Aslam, an expert in molecular modeling and CAPE tools, leading our development effort. We believe this will shorten our original go-to-market timeline by at least a year. The recent media coverage of Carbon Sciences, has resulted in partner inquires from all over the world. The interest in our proprietary CO2-to-Fuel technology is significant, and we look forward to working with qualified strategic partners in the near future."

Carbon Sciences was featured in recent articles in USA Today, New York Times, Newsweek Magazine, as well as being recognized during a Congressional hearing on carbon recycling.

####

About Carbon Sciences
Carbon Sciences Inc. is developing a breakthrough technology to recycle carbon dioxide (CO2) emissions into the basic fuel building blocks required to produce gasoline, diesel fuel, jet fuel and other fuels. Innovating at the intersection of chemical engineering and bio-engineering disciplines, we are developing a highly scalable biocatalytic process to meet the fuel needs of the world. Our solution to energy and climate challenges is to enable a sustainable world of fuel consumption and climate stability by recycling CO2 into fuel. For example, Carbon Sciences' breakthrough technology can be used to recycle CO2 emitted from fossil fuel power plants into gasoline to run cars and jet fuel to fly aircraft. To learn more about the Company, please visit our website at www.carbonsciences.com

For more information, please click here

Contacts:
5511-C Ekwill Street
Santa Barbara, CA 93111, USA
Tel: (805) 456-7000
fax: (805) 681-1300

Copyright © Carbon Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project