Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Carbon Sciences Announces Development Breakthroughs Shortening Path to Commercialization of Its CO2-to-Fuel Technology

Abstract:
Company's Recent Prototype Results and Computer Modeling Allow for Full Scale Pilot Design without Mini-Pilot Phase

Carbon Sciences Announces Development Breakthroughs Shortening Path to Commercialization of Its CO2-to-Fuel Technology

Santa Barbara, CA | Posted on May 19th, 2009

Carbon Sciences, Inc. (CABN), the developer of a breakthrough technology to recycle carbon dioxide (CO2) emissions into gasoline and other fuels, today announced significant technology development breakthroughs that shorten the path to commercializing its CO2-to-Fuel technology.

Previously, the company had planned on developing a mini-pilot plant as the next scale up of its CO2-to-Fuel technology, where additional performance data would be obtained in order to design a full scale commercial pilot plant. However, recent breakthroughs in the nano-engineering of the biocatalyst, encouraging prototype performance results and molecular based computer modeling of the biocatalytic process have provided the development team with a direct path to full scale pilot design.

Dr. Naveed Aslam, the company's CTO, explained, "Current state-of-the-art computer aided process engineering (CAPE) tools allow system designers to design industrial scale plants with a high degree of confidence, with respect to its real-world performance. However, CAPE tools require very good input data for the performance of proprietary processes, such as our biocatalytic CO2-to-Fuel process. In traditional chemical engineering, the performance data of a prototype, or bench top system, vary dramatically from that of the pilot plant. Therefore, engineers were required to build a medium scale, or mini-pilot plant, to fine-tune the process before gaining confidence in the performance of a full-scale design. Because our CO2-to-Fuel biocatalytic process is optimized as a nano-machine, its performance at a higher scale is very predictable. Recently, we have developed accurate low-level molecular models of our biocatalysts, based on prototype experiments, to drive the CAPE simulations of a full scale CO2-to-Fuel plant. We now believe that we can go straight from our prototype, to a CAPE tool, to a full scale pilot plant design for implementation by a strategic partner."

Commenting on this exciting development, company president, Byron Elton, said, "This breakthrough saves us the time and the capital required to develop a mini-pilot plant. We are honored and fortunate to have Dr. Aslam, an expert in molecular modeling and CAPE tools, leading our development effort. We believe this will shorten our original go-to-market timeline by at least a year. The recent media coverage of Carbon Sciences, has resulted in partner inquires from all over the world. The interest in our proprietary CO2-to-Fuel technology is significant, and we look forward to working with qualified strategic partners in the near future."

Carbon Sciences was featured in recent articles in USA Today, New York Times, Newsweek Magazine, as well as being recognized during a Congressional hearing on carbon recycling.

####

About Carbon Sciences
Carbon Sciences Inc. is developing a breakthrough technology to recycle carbon dioxide (CO2) emissions into the basic fuel building blocks required to produce gasoline, diesel fuel, jet fuel and other fuels. Innovating at the intersection of chemical engineering and bio-engineering disciplines, we are developing a highly scalable biocatalytic process to meet the fuel needs of the world. Our solution to energy and climate challenges is to enable a sustainable world of fuel consumption and climate stability by recycling CO2 into fuel. For example, Carbon Sciences' breakthrough technology can be used to recycle CO2 emitted from fossil fuel power plants into gasoline to run cars and jet fuel to fly aircraft. To learn more about the Company, please visit our website at www.carbonsciences.com

For more information, please click here

Contacts:
5511-C Ekwill Street
Santa Barbara, CA 93111, USA
Tel: (805) 456-7000
fax: (805) 681-1300

Copyright © Carbon Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Sustainable Nanotechnologies Project November 20th, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

Chemistry

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Announcements

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Environment

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Application of Nanocomposites in Production of Photocatalysts for Water Treatment November 17th, 2014

BRAAVOO will design an unmanned surveying vessel and marine buoy that carry biosensors to monitor marine pollutants November 12th, 2014

Energy

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE