Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The Harry Potter effect: Cornell researchers experiment with making objects 'invisible'

Provided/Nanophotonics Group
Scanning electron microscope images of the cloaking device. Top: Light passes through silicon posts as it bounces off a deformed reflector. Varying density of the silicon posts bends light to compensate for the distortion in the reflector. Bottom: a close-up of the array of silicon posts, each about 50 billionths of a meter in diameter.
Provided/Nanophotonics Group
Scanning electron microscope images of the cloaking device. Top: Light passes through silicon posts as it bounces off a deformed reflector. Varying density of the silicon posts bends light to compensate for the distortion in the reflector. Bottom: a close-up of the array of silicon posts, each about 50 billionths of a meter in diameter.

Abstract:
Somewhat the way Harry Potter can cover himself with a cloak and become invisible, Cornell researchers have developed a device that can make it seem that a bump in a carpet -- or, indeed, any flat surface -- isn't there.

The Harry Potter effect: Cornell researchers experiment with making objects 'invisible'

Ithaca, NY | Posted on May 12th, 2009

So far the illusion works only at the nanoscale, but the researchers suggest that the basic principle might eventually be scaled up for military and communications applications, or perhaps used in reverse to concentrate solar energy.

Devices that bend microwaves around small objects have previously been demonstrated, but this is the first cloaking device to work at optical frequencies, the researchers said.

The experimental device was built by Michal Lipson, associate professor of electrical and computer engineering, and colleagues in her Nanophotonics Research Group, based on a design by British physicists. It bends light bouncing off a reflective surface in a way that corrects for the distortion caused by a bump in the surface. Imagine controlling the light in front of a funhouse mirror so that reflections look perfectly normal, and the mirror looks flat.

A similar device that works at one particular wavelength of infrared light has been reported by University of California-Berkeley researchers, but the Cornell device is expected to work over a range of wavelengths from infrared into visible red light, the researchers said.

On a silicon wafer, Lipson's group made a tiny reflector about 30 microns (millionths of a meter) long with a 5-micron-wide bump in the middle, then placed an array of vertical silicon posts, each 50 nanometers (billionths of a meter) in diameter, in front of it. Because the posts are much smaller than the wavelength of the light, the light behaves as if it were passing through a solid whose density varies with the density of the posts. As light passes between regions of high and low density it is refracted, or bent, in the same way light is refracted as it passes from air to glass. By designing smooth transitions of the density of posts, the researchers could control the path of the light to compensate for the distortion caused by the bump.

As a result, an observer looking at light reflected from the mirror sees a flat mirror, with no sign of the bump.

Of course it's still a long way to cloaking tanks on a battlefield. For starters, the thing being hidden has to hide behind a mirror, and the presence of a mirror would be a giveaway. A practical cloaking device also would have to adjust in real time to changing configurations of the object behind it.

A variation of the method might be used to bend light around an object, the researchers suggested, and a light-bending device could be made much larger by using technology that stamps or molds nanoscale patterns onto a surface.

Such refraction control might also be used in reverse, they added, to concentrate light in a small area to efficiently collect solar energy.

"At the core is the fact that we're manipulating light, telling it where to go and how to behave," said Carl Poitras, a research associate on the Cornell team.

The device was manufactured at the Cornell Nanoscale Facility, which is supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093

Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Military

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Energy

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Solar/Photovoltaic

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project