Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The Harry Potter effect: Cornell researchers experiment with making objects 'invisible'

Provided/Nanophotonics Group
Scanning electron microscope images of the cloaking device. Top: Light passes through silicon posts as it bounces off a deformed reflector. Varying density of the silicon posts bends light to compensate for the distortion in the reflector. Bottom: a close-up of the array of silicon posts, each about 50 billionths of a meter in diameter.
Provided/Nanophotonics Group
Scanning electron microscope images of the cloaking device. Top: Light passes through silicon posts as it bounces off a deformed reflector. Varying density of the silicon posts bends light to compensate for the distortion in the reflector. Bottom: a close-up of the array of silicon posts, each about 50 billionths of a meter in diameter.

Abstract:
Somewhat the way Harry Potter can cover himself with a cloak and become invisible, Cornell researchers have developed a device that can make it seem that a bump in a carpet -- or, indeed, any flat surface -- isn't there.

The Harry Potter effect: Cornell researchers experiment with making objects 'invisible'

Ithaca, NY | Posted on May 12th, 2009

So far the illusion works only at the nanoscale, but the researchers suggest that the basic principle might eventually be scaled up for military and communications applications, or perhaps used in reverse to concentrate solar energy.

Devices that bend microwaves around small objects have previously been demonstrated, but this is the first cloaking device to work at optical frequencies, the researchers said.

The experimental device was built by Michal Lipson, associate professor of electrical and computer engineering, and colleagues in her Nanophotonics Research Group, based on a design by British physicists. It bends light bouncing off a reflective surface in a way that corrects for the distortion caused by a bump in the surface. Imagine controlling the light in front of a funhouse mirror so that reflections look perfectly normal, and the mirror looks flat.

A similar device that works at one particular wavelength of infrared light has been reported by University of California-Berkeley researchers, but the Cornell device is expected to work over a range of wavelengths from infrared into visible red light, the researchers said.

On a silicon wafer, Lipson's group made a tiny reflector about 30 microns (millionths of a meter) long with a 5-micron-wide bump in the middle, then placed an array of vertical silicon posts, each 50 nanometers (billionths of a meter) in diameter, in front of it. Because the posts are much smaller than the wavelength of the light, the light behaves as if it were passing through a solid whose density varies with the density of the posts. As light passes between regions of high and low density it is refracted, or bent, in the same way light is refracted as it passes from air to glass. By designing smooth transitions of the density of posts, the researchers could control the path of the light to compensate for the distortion caused by the bump.

As a result, an observer looking at light reflected from the mirror sees a flat mirror, with no sign of the bump.

Of course it's still a long way to cloaking tanks on a battlefield. For starters, the thing being hidden has to hide behind a mirror, and the presence of a mirror would be a giveaway. A practical cloaking device also would have to adjust in real time to changing configurations of the object behind it.

A variation of the method might be used to bend light around an object, the researchers suggested, and a light-bending device could be made much larger by using technology that stamps or molds nanoscale patterns onto a surface.

Such refraction control might also be used in reverse, they added, to concentrate light in a small area to efficiently collect solar energy.

"At the core is the fact that we're manipulating light, telling it where to go and how to behave," said Carl Poitras, a research associate on the Cornell team.

The device was manufactured at the Cornell Nanoscale Facility, which is supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093

Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Discoveries

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Military

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic