Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Solar and Nuclear Energy Expertise to be Enhanced by Research Centers: Los Alamos to establish two DOE-funded Energy Frontier Research Centers

Abstract:
Solar- and nuclear-energy technology advancements from Los Alamos National Laboratory (LANL) could help the nation in its quest to capture viable sources of alternative energy, thanks to funding from the U.S. Department of Energy's Office of Science.

Solar and Nuclear Energy Expertise to be Enhanced by Research Centers: Los Alamos to establish two DOE-funded Energy Frontier Research Centers

LOS ALAMOS, NM | Posted on May 12th, 2009

Los Alamos will be home to two new Energy Frontier Research Centers (EFRCs)—each designed to advance scientific research in alternative and renewable energy—through a five-year funding commitment by DOE. Forty-six such centers will be established nationwide at national laboratories, universities, nonprofit organizations, and private firms. The two LANL centers each will receive $3.8 million a year in funding ($19 million each total over the five-year term).

One center, led by Los Alamos National Laboratory Fellow Victor Klimov, will focus on exploiting the physical properties of nanomaterials (compilations of structures so tiny they can't be seen by the human eye) to more efficiently convert solar energy into electric power, or develop materials such as highly efficient solar collectors that could be painted onto a surface to generate electricity. At the center of this research are quantum dots, extremely tiny semi-conducting materials with the ability to generate more than one electrical-energy unit (electron) per single light unit (photon)—an improvement over today's solar cells.

"Engineered nanostructures such as quantum dots have the ability to harvest light more efficiently than silicon," Klimov said. "Quantum dots and similar nanomaterials show tremendous potential in

numerous applications that could make solar energy a more viable alternative energy source."

The other center, led by Los Alamos National Laboratory Fellow Michael Nastasi, will focus on developing robust materials that will be able to withstand extreme conditions such as constant bombardment by radiation or around-the-clock mechanical beatings. To develop these materials, Nastasi and his research team will develop technology to design and engineer bulk materials at the molecular level using nanomaterials.

"The goal of this research is to create materials that will withstand the rigors of next-generation nuclear of reactors to allow them to function reliably and safely for long periods of time with reduced maintenance," Nastasi said. "We will identify inherent characteristics of materials at the atomic level that allow these materials to withstand extreme environments or lead to failure within them. We would then hope to be able to selectively design and create structures at the nanoscale to exploit strengths or eliminate weaknesses to make these materials particularly suited to surviving in extreme environments."

In addition to leading two centers, LANL will participate in five others nationwide. Funding for the two centers does not come from the 2009 American Recovery and Reinvestment Act. More information about the EFRCs can be found at http://www.sc.doe.gov/bes/EFRC.html.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and the Washington Division of URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
AMES E. RICKMAN
505-665-9203

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021

Laboratories

Controlling chemical catalysts with sculpted light January 15th, 2021

New class of cobalt-free cathodes could enhance energy density of next-gen lithium-ion batteries December 21st, 2020

Govt.-Legislation/Regulation/Funding/Policy

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Researchers realize efficient generation of high-dimensional quantum teleportation January 14th, 2021

Announcements

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Energy

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021

Bionic idea boosts lithium-ion extraction January 1st, 2021

Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020

Quantum Dots/Rods

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

Breakthrough quantum-dot transistors create a flexible alternative to conventional electronics: Quantum dot logic circuits provide the long-sought building blocks for innovative devices, including printable electronics, flexible displays, and medical diagnostics October 30th, 2020

A quantum material-based diagnostic paint to sense problems before structural failure October 23rd, 2020

Solar/Photovoltaic

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021

Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020

Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project