Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Solar and Nuclear Energy Expertise to be Enhanced by Research Centers: Los Alamos to establish two DOE-funded Energy Frontier Research Centers

Abstract:
Solar- and nuclear-energy technology advancements from Los Alamos National Laboratory (LANL) could help the nation in its quest to capture viable sources of alternative energy, thanks to funding from the U.S. Department of Energy's Office of Science.

Solar and Nuclear Energy Expertise to be Enhanced by Research Centers: Los Alamos to establish two DOE-funded Energy Frontier Research Centers

LOS ALAMOS, NM | Posted on May 12th, 2009

Los Alamos will be home to two new Energy Frontier Research Centers (EFRCs)—each designed to advance scientific research in alternative and renewable energy—through a five-year funding commitment by DOE. Forty-six such centers will be established nationwide at national laboratories, universities, nonprofit organizations, and private firms. The two LANL centers each will receive $3.8 million a year in funding ($19 million each total over the five-year term).

One center, led by Los Alamos National Laboratory Fellow Victor Klimov, will focus on exploiting the physical properties of nanomaterials (compilations of structures so tiny they can't be seen by the human eye) to more efficiently convert solar energy into electric power, or develop materials such as highly efficient solar collectors that could be painted onto a surface to generate electricity. At the center of this research are quantum dots, extremely tiny semi-conducting materials with the ability to generate more than one electrical-energy unit (electron) per single light unit (photon)—an improvement over today's solar cells.

"Engineered nanostructures such as quantum dots have the ability to harvest light more efficiently than silicon," Klimov said. "Quantum dots and similar nanomaterials show tremendous potential in

numerous applications that could make solar energy a more viable alternative energy source."

The other center, led by Los Alamos National Laboratory Fellow Michael Nastasi, will focus on developing robust materials that will be able to withstand extreme conditions such as constant bombardment by radiation or around-the-clock mechanical beatings. To develop these materials, Nastasi and his research team will develop technology to design and engineer bulk materials at the molecular level using nanomaterials.

"The goal of this research is to create materials that will withstand the rigors of next-generation nuclear of reactors to allow them to function reliably and safely for long periods of time with reduced maintenance," Nastasi said. "We will identify inherent characteristics of materials at the atomic level that allow these materials to withstand extreme environments or lead to failure within them. We would then hope to be able to selectively design and create structures at the nanoscale to exploit strengths or eliminate weaknesses to make these materials particularly suited to surviving in extreme environments."

In addition to leading two centers, LANL will participate in five others nationwide. Funding for the two centers does not come from the 2009 American Recovery and Reinvestment Act. More information about the EFRCs can be found at http://www.sc.doe.gov/bes/EFRC.html.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and the Washington Division of URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
AMES E. RICKMAN
505-665-9203

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Laboratories

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

Finding coherence in quantum chaos: Theoretical breakthrough creates path to manipulating quantum chaos for laboratory experiments, quantum computing and black-hole research May 27th, 2022

A one-stop shop for quantum sensing materials May 27th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Announcements

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Energy

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Organic water splitters get a boost June 10th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

Quantum Dots/Rods

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

‘Missing jigsaw piece’: engineers make critical advance in quantum computer design August 20th, 2021

Solar/Photovoltaic

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

USTC found a pathway to high-quality ZnSe quantum wires April 8th, 2022

Graphene crystals grow better under copper cover April 1st, 2022

Peering into precise ultrafast dynamics in matter March 25th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project