Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Nano-boxes from DNA origami

May 6th, 2009

Nano-boxes from DNA origami

Abstract:
Danish researchers have made a nano-sized box out of DNA that can be locked or opened in response to 'keys' made from short strands of DNA. By changing the nature or number of these keys, it should be possible to use the boxes as sensors, drug delivery systems or even molecular computers.

Jørgen Kjems, Kurt Gothelf and colleagues from Aarhus University, Denmark, have taken an existing technique known as 'DNA origami' into a whole new dimension. The technique traditionally uses a few hundred short DNA strands to staple longer DNA strands together to create two-dimensional nanostructures, usually building from a solid surface that supports the structures.

'But in this case you have things standing up,' says Kjems. 'And this makes the structures more fragile and much harder to image, so just to prove that you actually have your structure can be quite difficult,' he adds.

To make the box shape, the team took a long, circular single strand of DNA from a virus that infects bacteria called bacteriophage M13. This M13 sequence is a cheap source of single-stranded DNA and is convenient size for building with. To turn this ring of DNA into a box, the team used a computer to work out exactly the right combination of short strands of complementary DNA which could 'staple' the appropriate areas of the ring together to get the desired box shape. When they mixed the M13 strand with the 220 short 'staple strands' and heated them up for an hour, the boxes neatly self-assembled.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Discoveries

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Announcements

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Nanobiotechnology

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizard® AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project