Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > When atoms are getting close: Shortest carbon-chlorine single bond detected until now

Abstract:
The description of compounds and interactions between atoms is one of the basic objectives of chemistry. Admittedly, chemical bonding models, which describe these properties very well, already exist. However, any deviation from the normal factors may lead to improving the models further. Chemists with Professor Thomas M. Klapötke at Ludwig-Maximilians-Universität (LMU) München have now analyzed a molecule, which has an extremely short bond length. As reported by the researchers in Nature Chemistry, the carbon atom and the chlorine atom in the so-called chlorotrinitromethane molecule are only 1.69 Angstroms apart from one another. "Non-covalent interactions are one of the factors responsible for this short distance", declared Göbel, whose doctoral thesis revealed the new results. "A better understanding of these interactions is important and useful in all areas, where molecular recognition and self-assembly come into play." (Nature Chemistry, 3 May 2009).

When atoms are getting close: Shortest carbon-chlorine single bond detected until now

Germany | Posted on May 4th, 2009

Chemical bond models that have been successfully used for well over a century assume that a good description of the properties of a compound can be obtained while ignoring all but the nearest-neighbour bonding interactions. The idea that electrostatic interactions between second, third and even further neighbors are important and should not be ignored has not been a common notion so far. The team of Professor Thomas M. Klapötke of the Department of Chemistry and Biochemistry at LMU Munich, primarily concerned with the synthesis and investigation of new high-energy materials, has now demonstrated for the first time that even second and third neighbors can have a decisive effect on the properties of a chemical bond.

For their investigation, the researchers chose the so-called chlorotrinitromethane molecule, a compound, consisting of the halogen chlorine and the pseudohalogen trinitromethyl group. The latter is composed of one carbon atom and three nitro groups. The trinitromethyl unit belongs to the group of pseudohalogens, which has properties similar to those of the halogens. Both groups are composed of non-metals, which are generally present in the gaseous or liquid state and form salts with metals. Contrary to the halogens, however, the pseudohalogens, instead of being true chemical elements, are chemical groups composed of different elements.

Using X-ray structural analysis, the researchers succeeded for the first time in revealing the internal structure of the chlorotrinitromethane molecule and drawing conclusions concerning the distances between the individual atoms. In their analyses, the chemists came up against a particularly interesting property of the chlorotrinitromethane molecule, namely the distance between its chlorine atom and its carbon atom is only 1.69 Angstroms. An Angstrom is 10-7 millimeters. The distance, now detected between the atoms, is the shortest distance ever observed for comparable chlorine-carbon single bonds. All previously measured distances fall within the range of approximately 1.71 and 1.91 Angstroms.

By means of theoretical calculations, carried out in cooperation with Professor Peter Politzer and Dr. Jane S. Murray of the University of New Orleans in the USA, the researchers were able to reproduce the distribution of electrical charges within the molecule. It turned out that the chlorine atom has a completely positive electrostatic potential, a rare case, since chlorine usually has a negative electrostatic potential in other molecules. Together with the charge distributions of the remaining atoms, this finding explains why the chlorine and carbon atoms are linked so tightly to one another. The results impressively show that electrostatic interactions between atoms within a molecule can have a significant effect on bond lengths, even if these atoms are not linked directly to one of the two atoms that form the bond.

In the case of chlorotrinitromethane, this effect is particularly pronounced and leads to an unusually short chlorine-carbon bond. However, it could be of importance in various other cases, especially in areas, where molecules recognize one another and assemble to larger structures. These mechanisms play an important role, for example, in biological systems and in nanotechnology.

Publication: "Chlorotrinitromethane and its exceptionally short carbon-chlorine bond";
Michael Göbel, Boris H. Tchitchanov, Jane S. Murray, Peter Politzer and Thomas M. Klapötke;
Nature Chemistry online,3 May 2009
DOI: 10.1038/nchem.179

####

For more information, please click here

Contacts:
Luise Dirscherl

49-892-180-2706

Any correspondence should be addressed to:
Professor Thomas M. Klapötke
Department Chemistry and Biochemistry
Division Inorganic Molecule Chemistry
Phone.: +49-(0)89 / 2180 77504
Fax: +49-(0)89 / 2180 77492

Website: www.chemie.uni-muenchen.de/ac/klapoetke/

Copyright © Ludwig-Maximilians-Universität München

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Chemistry

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE