Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers design unique method to induce immunity to certain STDs

Abstract:
Chlamydia trachomatis is the most common bacterial agent of sexually transmitted disease, accounting for more than a million reported infections in the United States each year.

Researchers at the California NanoSystems Institute (CNSI) at UCLA and the David Geffen School of Medicine at UCLA have now designed a unique method for inducing immunity to the infection. The findings could accelerate progress toward the development of a vaccine against Chlamydia trachomatis infections, which can lead to reproductive dysfunction and profound local inflammation requiring medical attention.

Researchers design unique method to induce immunity to certain STDs

Los Angeles, CA | Posted on April 29th, 2009

Their study, which describes the first use of a novel vaccine platform that utilizes an engineered nanoparticle delivery system, appears in the April 30 edition of the peer-reviewed online journal PLoS ONE, published by the Public Library of Science, and is available at dx.plos.org/10.1371/journal.pone.0005409.

The research team, a partnership between UCLA immunologists and nanotechnologists, is led by Kathleen Kelly, an associate professor of pathology and laboratory medicine and a CNSI member, and Leonard H. Rome, interim director of the CNSI and a professor of biological chemistry. The team also includes Cheryl I. Champion, Valerie A. Kickhoefer, Guangchao Liu, Raymond J. Moniz, Amanda S. Freed, Lisa L. Bergmann, Dana Vaccari, Sujna Raval-Fernandes and Ann M. Chan.

The researchers were able to uncover a surprising connection between vault nanoparticles and mucosal immunity. Vaults are barrel-shaped nanoscale capsules found in the cytoplasm of all mammalian cells that can be engineered to serve as potential therapeutic delivery devices.

"The primary goal of vaccines is to generate robust cell-mediated immune responses at mucosal surfaces while reducing overall inflammation caused by infection," Kelly said. "We found that vault nanoparticles containing immunogenic proteins can act as 'smart adjuvants' for inducing protective immunity at mucosal surfaces while avoiding destructive inflammation."

Adjuvants are molecular triggers that initiate vaccine responses.

Mucosal immune responses provide superior protection against disease, but there are currently no adjuvants approved by the Food and Drug Administration that are capable of stimulating cell-mediated immune responses within mucosal tissues. Mucosal surfaces are hostile environments, and immunogenic proteins require added protection for delivery to cells in order to induce immunity.

The team produced recombinant vaults through a process that involved the molecular engineering of these naturally occurring cellular structures to test the concept that vaults can have a broad nanosystems application as malleable nanocapsules.

"Our research team wanted to find out if recombinant vaults could provide such protection by encapsulating an antigen and preserving its functional characteristics, even within the cells," Kelly said.

The internal cavity of the recombinant vault nanoparticle is large enough to hold multiple immunogenic proteins, and because vaults are the size of small microbes, a vault particle containing such proteins can be easily absorbed by the targeted cells.

Vaults are being studied for use in the delivery of a range of potential therapeutics, including synthetic and natural compounds, nucleic acids, and proteins. Recombinant vaults containing proteins are easily produced, making vaults a viable vaccine delivery platform.

"Adjuvants provide the necessary assistance to vaccine preparations for promoting immunity or protection from infection by combining the vault with a part of the Chlamydia organism," Kelly said. "We were able to design a vaccine that prevented Chlamydia infection better than other designs."

The research team found that when they immunized female mice with recombinant vaults containing a component of Chlamydia and then exposed the mice to a vaginal challenge with live Chlamydia, their reproductive tracts were protected from severe bacterial infection.

The results suggest that vaults are superior adjuvants for immunization against infections largely limited to mucosal tissues.

"We are encouraged that our findings could accelerate progress toward developing a vaccine to guard against this infection," Kelly said.

The research was supported by the UCLA AIDS Institute and the National Institutes of Health.

The California NanoSystems Institute (CNSI) is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.

####

For more information, please click here

Contacts:
Jennifer Marcus,
310-267-4839

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE