Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoneedle is small in size, but huge in applications

Photo by L. Brian Stauffer
Mechanical science and engineering professor Min-Feng Yu and collaborators have developed a membrane-penetrating nanoneedle. “Nanoneedle-based delivery is a powerful new tool for studying biological processes and biophysical properties at the molecular level inside living cells,” Yu said.
Photo by L. Brian Stauffer
Mechanical science and engineering professor Min-Feng Yu and collaborators have developed a membrane-penetrating nanoneedle. “Nanoneedle-based delivery is a powerful new tool for studying biological processes and biophysical properties at the molecular level inside living cells,” Yu said.

Abstract:
Researchers at the University of Illinois have developed a membrane-penetrating nanoneedle for the targeted delivery of one or more molecules into the cytoplasm or the nucleus of living cells. In addition to ferrying tiny amounts of cargo, the nanoneedle can also be used as an electrochemical probe and as an optical biosensor.

Nanoneedle is small in size, but huge in applications

Champaign, IL | Posted on April 28th, 2009

"Nanoneedle-based delivery is a powerful new tool for studying biological processes and biophysical properties at the molecular level inside living cells," said Min-Feng Yu, a professor of mechanical science and engineering and corresponding author of a paper accepted for publication in Nano Letters, and posted on the journal's Web site.

In the paper, Yu and collaborators describe how they deliver, detect and track individual fluorescent quantum dots in a cell's cytoplasm and nucleus. The quantum dots can be used for studying molecular mechanics and physical properties inside cells.

To create a nanoneedle, the researchers begin with a rigid but resilient boron-nitride nanotube. The nanotube is then attached to one end of a glass pipette for easy handling, and coated with a thin layer of gold. Molecular cargo is then attached to the gold surface via "linker" molecules. When placed in a cell's cytoplasm or nucleus, the bonds with the linker molecules break, freeing the cargo.

With a diameter of approximately 50 nanometers, the nanoneedle introduces minimal intrusiveness in penetrating cell membranes and accessing the interiors of live cells.

The delivery process can be precisely controlled, monitored and recorded - goals that have not been achieved in prior studies.

"The nanoneedle provides a mechanism by which we can quantitatively examine biological processes occurring within a cell's nucleus or cytoplasm," said Yang Xiang, a professor of molecular and integrative physiology and a co-author of the paper. "By studying how individual proteins and molecules of DNA or RNA mobilize, we can better understand how the system functions as a whole."

The ability to deliver a small number of molecules or nanoparticles into living cells with spatial and temporal precision may make feasible numerous new strategies for biological studies at the single-molecule level, which would otherwise be technically challenging or even impossible, the researchers report.

"Combined with molecular targeting strategies using quantum dots and magnetic nanoparticles as molecular probes, the nanoneedle delivery method can potentially enable the simultaneous observation and manipulation of individual molecules," said Ning Wang, a professor of mechanical science and engineering and a co-author of the paper.

Beyond delivery, the nanoneedle-based approach can also be extended in many ways for single-cell studies, said Yu, who also is a researcher at the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems. "Nanoneedles can be used as electrochemical probes and as optical biosensors to study cellular environments, stimulate certain types of biological sequences, and examine the effect of nanoparticles on cellular physiology."

With Wang, Xiang and Yu, co-authors of the paper are graduate student Kyungsuk Yum and postdoctoral research associate Sungsoo Na. Yu and Wang are affiliated with the university's Beckman Institute. Wang is also affiliated with the department of bioengineering and with the university's Micro and Nanotechnology Laboratory.

The Grainger Foundation, National Science Foundation and National Institutes of Health funded the work.

####

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073


Min-Feng Yu
217-333-9246


Yang Xiang
217-265-9448


Ning Wang, 217-265-0913

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Nanomedicine

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic