Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Flu vaccine given in microneedle skin patches proves effective in mice: New delivery method could result in simpler, safer, painless vaccines

Photo: Gary Meek
Image shows an array of microneedles against a microscope image.
Photo: Gary Meek
Image shows an array of microneedles against a microscope image.

Abstract:
Flu vaccine delivered through skin patches containing microneedles has proven just as effective at preventing influenza in mice as intramuscular, hypodermic flu immunization. A team of researchers at Emory University and the Georgia Institute of Technology believes the new microneedle skin patch method of delivering flu vaccine could improve overall seasonal vaccination coverage in people because of decreased pain, increased convenience, lower cost and simpler logistics over conventional hypodermic immunization.

Flu vaccine given in microneedle skin patches proves effective in mice: New delivery method could result in simpler, safer, painless vaccines

Atlanta, GA | Posted on April 27th, 2009

The research will be published in the Proceedings of the National Academy of Sciences (PNAS). Another study by the research team on a different influenza strain was described in the journal PLoS ONE.

The patches used in the experiments contained an array of stainless steel microneedles coated with inactivated influenza virus. The patches were pressed manually into the skin and after a few minutes, the vaccine coating dissolved off within the skin. The coated microneedle immunizations were compared to conventional intramuscular hypodermic injections at the same dose in another group of mice.

The researchers found that the microneedle vaccinations induced strong immune responses against influenza virus that were comparable to immune responses induced by the intramuscular, hypodermic immunizations. One month after vaccination, the researchers infected both groups of mice with a high dose of influenza virus. While all mice in a control group of unvaccinated mice died of influenza, all mice in both the hypodermic and the microneedle groups survived.

"Our findings show that microneedle patches are just as effective at protecting against influenza as conventional hypodermic immunizations," says Richard Compans, PhD, Emory professor of microbiology and immunology and one of the paper's senior authors. "In addition, vaccine delivery into the skin is desirable because of the skin's rich immune network."

Even though cutaneous immunization has been shown to induce a broad range of immune responses, and to be especially effective in individuals over age 60, this method has not been widely used because it has not been convenient and has required highly trained personnel.

"Unlike conventional hypodermic injections, microneedles are prepared in a patch for simple administration, possibly by patients themselves, and inserted painlessly onto the skin without specialized training," says Mark Prausnitz, PhD, professor in the Georgia Tech School of Chemical and Biomolecular Engineering and co-senior author. "These micron-scale needles can be mass produced using low-cost methods for distribution to doctors' office, pharmacies and, possibly, people's homes."

Other advantages of the microneedle patches could include more convenient storage, easier transportation and lower dosage requirements. Lower doses could be particularly important because flu vaccine production capacity sometimes is limited for seasonal vaccine, and a future influenza pandemic would require much greater production of vaccine.

Replacing a hypodermic needle with a microneedle patch also could significantly impact the way other vaccines are delivered, and could be particularly beneficial in developing countries. A microneedle patch could fit inside an envelope for delivery by the postal service and would occupy much less storage space. Patches also would increase vaccine safety by reducing the dangers of accidental or intentional hypodermic needle re-use.

The project team plans future immunization studies in other animal models, including guinea pigs or ferrets, before initiating studies in humans. Also, more studies are needed to determine the minimum vaccine dose needed for full protection.

The Emory and Georgia Tech research team began developing the new microneedle vaccine patch technology in 2007 using grants from the National Institutes of Health (NIH). The project team has extensive experience in microneedle development, influenza vaccines, vaccine delivery systems, product development and interdisciplinary collaboration.

In 2007 the NIH awarded a $32.8 million, seven-year contract to Emory, along with the University of Georgia, to establish the Emory/UGA Influenza Pathogenesis and Immunology Research Center. The center is working to improve the effectiveness of flu vaccines through a number of different projects studying how influenza viruses attack their hosts, how they are transmitted, and what new immune targets might be identified for antiviral medicines.

Prausnitz and his colleagues have been working since the mid 1990s to develop microneedle technology for painless drug and vaccine delivery through the skin. The Georgia Tech team has also developed manufacturing processes for microneedle patches and tested the ability of the needles to deliver proteins, vaccines, nanoparticles, and other small and large molecules through the skin.

Other authors of the papers are Emory microbiologists Ioanna Skountzou and Chinglai Yang, and first authors Ling Ye, Qiyun Zhu, Dimitrios Koutsonanos, and Maria del Pilar Martin from Emory and Vladimir Zarnitsyn from Georgia Tech. Other authors and contributors were Yulong Gao, Lei Pan, and Zhiyuan Wen from Emory, and Harvinder Gill and Sean Sullivan from Georgia Tech.

####

About Emory University
The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Emory Winship Cancer Institute; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, Emory University Orthopaedics & Spine Hospital, the jointly owned Emory-Adventist Hospital, and EHCA, a limited liability company created with Hospital Corporation of America. EHCA includes two joint venture hospitals, Emory Eastside Medical Center and Emory Johns Creek Hospital. The Woodruff Health Sciences Center has a $2.3 billion budget, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,300 students and trainees, and a $5.5 billion economic impact on metro Atlanta.

For more information, please click here

Contacts:
Ashante Dobbs

404-727-5692

Copyright © Emory University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Nanomedicine

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Announcements

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

Research partnerships

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project