Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Hybrid Metal and Organic Nanoparticles for Targeting, Imaging, and Treating Cancer

Abstract:
Using a set of three biocompatible polymers and a nanoparticle containing gadolinium, a team of investigators at the Colorado School of Mines has created a nanoparticle platform that has the potential to target, image, and treat cancer. Gadolinium ions are used widely in medical imaging because of their ability to dramatically boost magnetic resonance imaging (MRI) signals. However, gadolinium can be toxic, particularly to the kidneys, so researchers have examined numerous ways of creating gadolinium constructs that would shield this element from the body.

Hybrid Metal and Organic Nanoparticles for Targeting, Imaging, and Treating Cancer

Bethesda, MD | Posted on April 27th, 2009

Writing in the journal Biomacromolecules, a team of investigators led by Stephen Boyes, Ph.D., solved this biocompatibility problem while creating a versatile nanoparticle, platform-attaching tumor-targeting molecules, and therapeutic agents. The investigators started by creating gadolinium nanoparticles in which the gadolinium ions were stably constrained with an organic framework. Next, they grew a three-component polymer on a nanoparticle surface using a chemical process known as reversible addition-fragmentation chain transfer (RAFT). The resulting polymer coating proved in tests to be both biocompatible and highly stable. In addition, the coating contained various chemical groups that enabled the researchers to attach the anticancer agent methotrexate and a tumor-targeting peptide known as GRGDS. The researchers note that they could have chosen other targeting and therapeutic agents to attach to the polymer coating.

MRI experiments showed that these nanoparticles generated magnetic signals as strong as those produced by MRI contrast agents now in clinical use, but with one-third less contrast agent. In addition, the investigators showed that one of the polymer components produced a significant fluorescence signal, suggesting that these nanoparticles could provide clinically useful, dual-mode imaging capabilities. Tests with tumor cells grown in culture showed that these nanoparticles were effective at targeting tumor cells, with little uptake by normal cells. Once taken up by tumor cells, the nanoparticles were as effective at killing the cells as was methotrexate.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda, MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer.”

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Imaging

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE