Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Cypress Unveils Market’s First SRAM on 65-nm Process Technology

Abstract:
72-Mbit QDR™II+ SRAM Delivers World's Fastest Operating Speed of 550 MHz; Dramatically Expands the Performance of Networking and Signal Processing Applications

Cypress Unveils Market’s First SRAM on 65-nm Process Technology

San Jose, CA | Posted on April 27th, 2009

Cypress Semiconductor Corp. (NYSE:CY), an industry leader in SRAMs, today announced it is sampling the industry's first Quad Data Rate™ (QDR™) and Double Data Rate (DDR) SRAM devices on 65-nm linewidth. The new 72-Mbit QDRII, QDRII+, DDRII and DDRII+ memories leverage process technology developed with foundry partner UMC. The new SRAMs feature the market's fastest available clock speed of 550 MHz and a total data rate of 80 Gbps in a 36-bit I/O width QDRII+ device, using half the power of 90-nm SRAMs. They are ideal for networking applications, including Internet core and edge routers, fixed and modular Ethernet switches, 3G base stations and secure routers, and also enhance the performance of medical imaging and military signal processing systems. The devices are pin compatible with 90-nm SRAMs, enabling networking customers to increase performance and port density while maintaining the same board layout.

Compared with their 90-nm predecessors, the 65-nm QDR and DDR SRAMs lower input and output capacitance by 60 percent. The QDRII+ and DDRII+ devices have On-Die Termination (ODT), which improves signal integrity, reduces system cost and saves board space by eliminating external termination resistors. The 65-nm devices use a Phase Locked Loop (PLL) instead of a Delay Locked Loop (DLL), which enables a 35 percent wider data valid window to reduce development time and cost for the customer.

"We continue to expand our Synchronous SRAM portfolio to broaden our target markets and grow market share," said Dana Nazarian, Executive Vice President of the Memory and Imaging Division at Cypress. "Cypress is committed to supporting the SRAM market long-term and building on our leadership position."

Availability and Photo

The 65-nm QDRII, QDRII+, DDRII and DDRII+ SRAMs are all currently sampling, with production expected in Q3 2009. Each device is available in multiple configurations based on I/O width (x18 or x36), burst length (B4 or B2) and latency (1.5, 2.0 or 2.5). The 65-nm 72-Mbit SRAMs are available in a standard 165-pin Fine-pitch Ball Grid Array (FBGA) package and are pin-compatible with existing 90-nm QDR and DDR devices for easy migration. A high-resolution photo of the QDRII+ SRAM is available at www.cypress.com/go/pr/65nmQDRSRAMphoto.

####

About Cypress Semiconductor Corp.
Cypress delivers high-performance, mixed-signal, programmable solutions that provide customers with rapid time-to-market and exceptional system value. Cypress offerings include the PSoC® programmable system-on-chip, USB controllers, general-purpose programmable clocks and memories. Cypress also offers wired and wireless connectivity technologies ranging from its CyFi™ Low-Power RF solution, to West Bridge® and EZ-USB® FX2LP controllers that enhance connectivity and performance in multimedia handsets. Cypress serves numerous markets including consumer, computation, data communications, automotive, and industrial. Cypress trades on the NYSE under the ticker symbol CY.

Cypress, the Cypress logo, PSoC, West Bridge and EZ-USB are registered trademarks and CyFi is a trademark of Cypress Semiconductor Corp. QDR and Quad Data Rate SRAMs comprise a family of products developed by Cypress, IDT, NEC Electronics, Renesas and Samsung. All other trademarks are the property of their respective owners.

For more information, please click here

Contacts:
Cypress Public Relations
Samer Bahou
408-544-1081

Copyright © Business Wire 2009

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Imaging

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Chip Technology

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Military

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE