Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cypress Unveils Market’s First SRAM on 65-nm Process Technology

Abstract:
72-Mbit QDR™II+ SRAM Delivers World's Fastest Operating Speed of 550 MHz; Dramatically Expands the Performance of Networking and Signal Processing Applications

Cypress Unveils Market’s First SRAM on 65-nm Process Technology

San Jose, CA | Posted on April 27th, 2009

Cypress Semiconductor Corp. (NYSE:CY), an industry leader in SRAMs, today announced it is sampling the industry's first Quad Data Rate™ (QDR™) and Double Data Rate (DDR) SRAM devices on 65-nm linewidth. The new 72-Mbit QDRII, QDRII+, DDRII and DDRII+ memories leverage process technology developed with foundry partner UMC. The new SRAMs feature the market's fastest available clock speed of 550 MHz and a total data rate of 80 Gbps in a 36-bit I/O width QDRII+ device, using half the power of 90-nm SRAMs. They are ideal for networking applications, including Internet core and edge routers, fixed and modular Ethernet switches, 3G base stations and secure routers, and also enhance the performance of medical imaging and military signal processing systems. The devices are pin compatible with 90-nm SRAMs, enabling networking customers to increase performance and port density while maintaining the same board layout.

Compared with their 90-nm predecessors, the 65-nm QDR and DDR SRAMs lower input and output capacitance by 60 percent. The QDRII+ and DDRII+ devices have On-Die Termination (ODT), which improves signal integrity, reduces system cost and saves board space by eliminating external termination resistors. The 65-nm devices use a Phase Locked Loop (PLL) instead of a Delay Locked Loop (DLL), which enables a 35 percent wider data valid window to reduce development time and cost for the customer.

"We continue to expand our Synchronous SRAM portfolio to broaden our target markets and grow market share," said Dana Nazarian, Executive Vice President of the Memory and Imaging Division at Cypress. "Cypress is committed to supporting the SRAM market long-term and building on our leadership position."

Availability and Photo

The 65-nm QDRII, QDRII+, DDRII and DDRII+ SRAMs are all currently sampling, with production expected in Q3 2009. Each device is available in multiple configurations based on I/O width (x18 or x36), burst length (B4 or B2) and latency (1.5, 2.0 or 2.5). The 65-nm 72-Mbit SRAMs are available in a standard 165-pin Fine-pitch Ball Grid Array (FBGA) package and are pin-compatible with existing 90-nm QDR and DDR devices for easy migration. A high-resolution photo of the QDRII+ SRAM is available at www.cypress.com/go/pr/65nmQDRSRAMphoto.

####

About Cypress Semiconductor Corp.
Cypress delivers high-performance, mixed-signal, programmable solutions that provide customers with rapid time-to-market and exceptional system value. Cypress offerings include the PSoC® programmable system-on-chip, USB controllers, general-purpose programmable clocks and memories. Cypress also offers wired and wireless connectivity technologies ranging from its CyFi™ Low-Power RF solution, to West Bridge® and EZ-USB® FX2LP controllers that enhance connectivity and performance in multimedia handsets. Cypress serves numerous markets including consumer, computation, data communications, automotive, and industrial. Cypress trades on the NYSE under the ticker symbol CY.

Cypress, the Cypress logo, PSoC, West Bridge and EZ-USB are registered trademarks and CyFi is a trademark of Cypress Semiconductor Corp. QDR and Quad Data Rate SRAMs comprise a family of products developed by Cypress, IDT, NEC Electronics, Renesas and Samsung. All other trademarks are the property of their respective owners.

For more information, please click here

Contacts:
Cypress Public Relations
Samer Bahou
408-544-1081

Copyright © Business Wire 2009

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Imaging

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic