Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Organic Biosensor Detects Onset of Acute Myocardial Ischemia

Scaled-up schematic of the ion-sensitive field effect transistor that measures concentrations of potassium and hydrogen ions in the human heart.
Scaled-up schematic of the ion-sensitive field effect transistor that measures concentrations of potassium and hydrogen ions in the human heart.

Abstract:
Engineering researchers at the University of Arkansas have fabricated and tested a unique biosensor that measures concentrations of potassium and hydrogen ions in the human heart with high specificity. The research could lead to a superior method of monitoring indicators of acute myocardial ischemia, or AMI, one of the leading causes of cardiovascular failure.

Organic Biosensor Detects Onset of Acute Myocardial Ischemia

Fayetteville, AR | Posted on April 22nd, 2009

"AMI is triggered by insufficient blood supply to the heart muscles," said Taeksoo Ji, assistant professor of electrical engineering. "This lack of blood supply results in excess anaerobic metabolism, or lack of oxygen, which we know is accompanied by an increase in potassium and hydrogen ions released from cardiovascular cells. The goal is to develop a robust yet inexpensive sensor that rapidly detects these chemicals that signal the onset of AMI."

Due in part to the National Heart Lung and Blood Institute's emphasis on promoting research on rapid detection of the symptoms of acute myocardial ischemia, various types of biosensor designs, including ion-selective optical fibers, wave-guides, nanoparticle fluorescence sensors and ion-selective electrodes, have been used to detect potassium and hydrogen in the blood stream. Working in the Organic Electronics and Devices Laboratory, Ji, research assistant professor Soyoun Jung and student Pratyush Rai developed an ion-sensitive field effect transistor, yet another type of sensor used to detect potassium and hydrogen in blood.

Most ion-sensitive field effect transistors are silicon based. Instead of silicon, Ji's team worked with a low-cost organic semiconductor known as poly 3-hexylthiophene, which they fabricated on a flexible substrate. The design and fabrication process was based on special devices used to deposit organic semiconductors on substrates. Organic semiconductor films do not require high vacuum and temperature cycles for deposition and curing, which reduces cost of production.

The researchers also developed a smoothing technique to assess the effect of external electric fields on the devices. The human heart creates a great amount of electrical charge from the organ's network of neurons that help it relay electrical impulse for pace-making activity. The myocardium, or the middle section of the heart wall, has intense electrical activity. Diagnostic tools such as electrocardiograms detect electric fields emanating from the heart. To operate properly, implantable biosensor devices must be immune to these electric fields, or background noise.

The researchers' smoothing technique and noise calculation demonstrated a high signal-to-noise ratio. Overall, the testing and validation process for the device displayed stable calibration characteristics, which proved its independence from surrounding electrical fields. In other words, the sensor was immune to external voltages.

Ji collaborates with Vijay Varadan, distinguished professor of electrical engineering and director of the Center for Wireless Nano-, Bio- and Info-Tech Sensors and Systems, which is supported by the National Science Foundation. Led by Ji, the Organic Electronics and Devices Laboratory is one of the center's four laboratories.

Varadan holds the College of Engineering's Twenty-First Century Endowed Chair in Nano- and Bio-Technologies and Medicine and the college's Chair in Microelectronics and High Density Electronics. In addition to his position as director of the above center, he directs the university's High Density Electronics Center. Varadan is also a professor of neurosurgery in the College of Medicine at the University of Arkansas for Medical Sciences in Little Rock, Ark.

The researchers' findings were published in Applied Physics Letters, a journal of the American Institute of Physics Publishing. An electronic copy of the article can be provided upon request.

####

For more information, please click here

Contacts:
Matt McGowan
science and research communications officer
University Relations
479-575-4246


Taeksoo Ji
assistant professor, electrical engineering
College of Engineering
479-575-6586


Vijay Varadan
distinguished professor, electrical engineering
College of Engineering
479-575-2873

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Nanomedicine

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Novel nanoparticles could save soldiers' lives after explosions April 15th, 2015

Nanoparticles at specific temperature stimulate antitumor response: Dartmouth researchers identify precise heat to boost immune system against cancer tumors April 14th, 2015

Sensors

Optical resonance-based biosensors designed for medical applications April 18th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

Discoveries

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Announcements

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE