Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Innovation could make lab-on-a-chip devices easier to use, cheaper to make

Purdue graduate students Han-Sheng Chuang and Ahmed Amin use a microscope and other equipment to watch the performance of a prototype lab on a chip capable of being programmed to carry out a variety of jobs. The innovation is a step toward more widespread use of the miniature analytical tools used to measure everything from blood glucose to viruses and bacteria to genes. (Purdue News Service photo/Andrew Hancock)
Purdue graduate students Han-Sheng Chuang and Ahmed Amin use a microscope and other equipment to watch the performance of a prototype lab on a chip capable of being programmed to carry out a variety of jobs. The innovation is a step toward more widespread use of the miniature analytical tools used to measure everything from blood glucose to viruses and bacteria to genes. (Purdue News Service photo/Andrew Hancock)

Abstract:
Researchers have designed a lab on a chip capable of being programmed to perform a variety of jobs, a step toward more widespread use of the miniature analytical tools used to measure everything from blood glucose to viruses, bacteria to genes.

Innovation could make lab-on-a-chip devices easier to use, cheaper to make

WEST LAFAYETTE, IN | Posted on April 21st, 2009

Current lab-on-a-chip technology is expensive and time-consuming to develop because each chip must be specifically designed to perform certain assays, or chemical analyses.

Researchers at Purdue University have developed both the hardware and software to create a more versatile chip capable of being programmed for any number of tasks, said Steven T. Wereley, an associate professor of mechanical engineering.

Doctoral students Han-Sheng Chuang and Ahmed Amin have worked with Wereley to create a prototype programmable chip, in research at the Birck Nanotechnology Center in Purdue's Discovery Park. The students and other members of the research team have published four technical papers on the work since 2007, and their business plan for commercializing the technology was awarded a top prize in February during Purdue's 22nd annual Burton D. Morgan Business Plan Competition.

The work is part of a National Science Foundation-funded collaboration that also includes assistant professor Mithuna Thottethodi and associate professor T. N. Vijaykumar, both in Purdue's School of Electrical and Computer Engineering, and Stephen Jacobson, an associate professor of chemistry at Indiana University.

Lab-on-a-chip technology currently is being used for various applications in medicine and research. The systems are used for measuring specific types of cells and molecules in a patient's blood, monitoring microorganisms such as bacteria and fungi in the environment and separating biological molecules for laboratory analyses.

But the chips, which are roughly palm-size or smaller, are difficult to design and manufacture.

"With conventional technology, you have to design the individual layout of the chip, fabricate it, test it and then redesign it when testing uncovers problems," Wereley said. "You are talking about a lot of time, effort and expense that could be dramatically reduced by having a multipurpose programmable chip."

For the life scientists who primarily use the technology, the devices are labor-intensive to develop and use.

"Imagine if running a word processing application on your computer required you to go to the lab and design your own microprocessor for that specific application," Amin said. "Instead, wouldn't it be better if you could just buy a multipurpose chip and download the software you needed? That's what we're going to do -- make it easier to use so that the life scientists using the chips can concentrate on their own work instead of chip design."

Researchers at the Massachusetts Institute of Technology first suggested the idea of applying computer programming concepts to lab-on-a-chip technology in 2004.

"They have focused on programming-language aspects, while we're taking the idea to realization by focusing on the hardware and the software-hardware interface," Amin said. "We have developed the software compiler and the runtime system that would automatically understand a program and convert it into signals to control more complex chips."

The new chip is made out of a rubber-like polymer, called polydimethylsiloxane, instead of the rigid glass or silicon wafers often used. The flexible material is needed because pumps used to direct the flow of fluid operate with moving diaphragms.

Most other chips have the polymer layer sandwiched between two glass layers.

"We chose to build the whole chip out of the PDMS polymer, which makes it easier to fabricate and reduces cost over other alternatives, such as silicon or glass," Chuang said.

The Purdue-designed chip is able to mix, store, heat and sense what the sample is made of, whereas previous programmable chips have been limited to mixing and storing samples.

The researchers have demonstrated how the chip works using a mock sample and reagent dyed with food coloring.

The programmable chips are likely to be commercially available within five years, said Amin, a student in the School of Electrical and Computer Engineering who developed the programming language and "architecture," or interface between the hardware and software.

The language enables the "assay protocols" required for specific tasks to be downloaded to the chip.

Purdue has applied for a provisional patent on the technology.

"What we eventually aim to do is create different classes of chips, where each class can run multiple assays from a few related life-science domains," Amin said.

Lab-on-a-chip technology uses "microfluidics," or precisely controlling and manipulating fluids with miniature channels and other components. The devices contain two major parts: an electronic control portion and a portion consisting of "fluidic functional units," or components for storing, transporting, mixing and heating samples. These units are connected by tiny channels in which the fluid path is controlled by using special pumps to open and close miniature valves.

Chuang, a student in the School of Mechanical Engineering, has led work to develop hardware for the new programmable chip, creating a single chip that contains a multipurpose arrangement of these components.

The research also is supported by the Purdue Research Foundation and Birck Nanotechnology Center.

Information about research papers published by the team on the work is available online at engineering.purdue.edu/ploc/index_files/publications.htm

####

For more information, please click here

Contacts:
Writer: Emil Venere
(765) 494-4709


Sources: Steven T. Wereley
765/494-5624


Ahmed Amin


Han-Sheng Chuang


Purdue News Service:
(765) 494-2096

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project