Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Self-assembled nanowires could make chips smaller and faster

Abstract:
Researchers at the University of Illinois have found a new way to make transistors smaller and faster. The technique uses self-assembled, self-aligned, and defect-free nanowire channels made of gallium arsenide.

In a paper to appear in the IEEE (Institute of Electrical and Electronics Engineers) journal Electron Device Letters, U. of I. electrical and computer engineering professor Xiuling Li and graduate research assistant Seth Fortuna describe the first metal-semiconductor field-effect transistor fabricated with a self-assembled, planar gallium-arsenide nanowire channel.

Self-assembled nanowires could make chips smaller and faster

Champaign, IL | Posted on April 20th, 2009

Nanowires are attractive building blocks for both electronics and photonics applications. Compound semiconductor nanowires, such as gallium arsenide, are especially desirable because of their better transport properties and versatile heterojunctions. However, a number of challenges - including integration with existing microelectronics - must first be overcome.

"Our new planar growth process creates self-aligned, defect-free gallium-arsenide nanowires that could readily be scaled up for manufacturing purposes," said Li, who also is affiliated with the university's Micro and Nanoelectronics Laboratory and the Beckman Institute. "It's a non-lithographic process that can precisely control the nanowire dimension and orientation, yet is compatible with existing circuit design and fabrication technology."

The gallium-arsenide nanowire channel used in the researchers' demonstration transistor was grown by metal organic chemical vapor deposition using gold as a catalyst. The rest of the transistor was made with conventional microfabrication techniques.

While the diameter of the transistor's nanowire channel was approximately 200 nanometers, nanowires with diameters as small as 5 nanometers can be made with the gold-catalyzed growth technique, the researchers report. The self-aligned orientation of the nanowires is determined by the crystal structure of the substrate and certain growth parameters.

In earlier work, Li and Fortuna demonstrated they could grow the nanowires and then transfer-print them on other substrates, including silicon, for heterogeneous integration. "Transferring the self-aligned planar nanowires while maintaining both their position and alignment could enable flexible electronics and photonics at a true nanometer scale," the researchers wrote in the December 2008 issue of the journal Nano Letters.

In work presented in the current paper, the researchers grew the gallium-arsenide nanowire channel in place, instead of transferring it. In contrast to the common types of non-planar gallium arsenide nanowires, the researchers' planar nanowire was free from twin defects, which are rotational defects in the crystal structure that decrease the mobility of the charge carriers.

"By replacing the standard channel in a metal-semiconductor field-effect transistor with one of our planar nanowires, we demonstrated that the defect-free nanowire's electron mobility was indeed as high as the corresponding bulk value," Fortuna said. "The high electron mobility nanowire channel could lead to smaller, better and faster devices."

Considering their planar, self-aligned and transferable nature, the nanowire channels could help create higher performance transistors for next-generation integrated circuit applications, Li said.

The high quality planar nanowires can also be used in nano-injection lasers for use in optical communications.

The researchers are also developing new device concepts driven by further engineering of the planar one-dimensional nanostructure.

The work was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
James E. Kloeppel

217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project