Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Self-assembled nanowires could make chips smaller and faster

Abstract:
Researchers at the University of Illinois have found a new way to make transistors smaller and faster. The technique uses self-assembled, self-aligned, and defect-free nanowire channels made of gallium arsenide.

In a paper to appear in the IEEE (Institute of Electrical and Electronics Engineers) journal Electron Device Letters, U. of I. electrical and computer engineering professor Xiuling Li and graduate research assistant Seth Fortuna describe the first metal-semiconductor field-effect transistor fabricated with a self-assembled, planar gallium-arsenide nanowire channel.

Self-assembled nanowires could make chips smaller and faster

Champaign, IL | Posted on April 20th, 2009

Nanowires are attractive building blocks for both electronics and photonics applications. Compound semiconductor nanowires, such as gallium arsenide, are especially desirable because of their better transport properties and versatile heterojunctions. However, a number of challenges - including integration with existing microelectronics - must first be overcome.

"Our new planar growth process creates self-aligned, defect-free gallium-arsenide nanowires that could readily be scaled up for manufacturing purposes," said Li, who also is affiliated with the university's Micro and Nanoelectronics Laboratory and the Beckman Institute. "It's a non-lithographic process that can precisely control the nanowire dimension and orientation, yet is compatible with existing circuit design and fabrication technology."

The gallium-arsenide nanowire channel used in the researchers' demonstration transistor was grown by metal organic chemical vapor deposition using gold as a catalyst. The rest of the transistor was made with conventional microfabrication techniques.

While the diameter of the transistor's nanowire channel was approximately 200 nanometers, nanowires with diameters as small as 5 nanometers can be made with the gold-catalyzed growth technique, the researchers report. The self-aligned orientation of the nanowires is determined by the crystal structure of the substrate and certain growth parameters.

In earlier work, Li and Fortuna demonstrated they could grow the nanowires and then transfer-print them on other substrates, including silicon, for heterogeneous integration. "Transferring the self-aligned planar nanowires while maintaining both their position and alignment could enable flexible electronics and photonics at a true nanometer scale," the researchers wrote in the December 2008 issue of the journal Nano Letters.

In work presented in the current paper, the researchers grew the gallium-arsenide nanowire channel in place, instead of transferring it. In contrast to the common types of non-planar gallium arsenide nanowires, the researchers' planar nanowire was free from twin defects, which are rotational defects in the crystal structure that decrease the mobility of the charge carriers.

"By replacing the standard channel in a metal-semiconductor field-effect transistor with one of our planar nanowires, we demonstrated that the defect-free nanowire's electron mobility was indeed as high as the corresponding bulk value," Fortuna said. "The high electron mobility nanowire channel could lead to smaller, better and faster devices."

Considering their planar, self-aligned and transferable nature, the nanowire channels could help create higher performance transistors for next-generation integrated circuit applications, Li said.

The high quality planar nanowires can also be used in nano-injection lasers for use in optical communications.

The researchers are also developing new device concepts driven by further engineering of the planar one-dimensional nanostructure.

The work was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
James E. Kloeppel

217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Chip Technology

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Surprise discovery in the search for energy efficient information storage August 10th, 2017

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14 ASIC design system August 9th, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Discoveries

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project