Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Ordered Water: Just how much water is there in calcined gypsum?

Abstract:
Gypsum was used as a building material in antiquity and is still widely used as a binder in plaster, drywall, and spackling paste. Known as dihydrate in construction chemistry, gypsum is a water-containing calcium sulfate (CaSO4. 2 H2O).

Ordered Water: Just how much water is there in calcined gypsum?

Trostberg, Germany | Posted on April 16th, 2009

In various calcination processes, some of the water of crystallization is removed, resulting in calcined gypsum, or hemihydrate (CaSO4. 0.5 H2O). When this material comes into contact with water, it reabsorbs it and sets up. The structure and exact water content of hemihydrate have remained a matter of speculation.

Michael F. Bräu (BASF Construction Chemicals GmbH) and Horst Weiss (BASF SE) have now brought this speculation to an end: by using single-crystal structural analyses they were able to solve the structure, generate a structural model, and support it with computer calculations. As reported in the journal Angewandte Chemie, hemihydrate does indeed contain exactly one half of a water molecule per structural unit—tightly bound to the calcium sulfate framework.

Hemihydrate is the most heavily produced inorganic compound worldwide, so its structure and water content are of great interest, both economically and scientifically. The first structural model of this compound was proposed in 1933, and it still holds today. Since then, there have been a number of refined models, which do a good job of reproducing the fundamental calcium sulfate scaffold. However, there has always been disagreement about whether the water molecules also adopt a defined arrangement and if so, what it looks like.

Answering such questions requires structural analyses based on X-ray diffraction experiments carried out on single crystals of the right size and quality. The atoms of a crystal deflect incoming X-rays; the resulting characteristic diffraction pattern makes it possible to calculate the positions of the individual atoms in the crystal. However, this has been very difficult to achieve in the case of gypsum crystals. Bräu and Weiss have now been successful. By using various tricks they were able to interpret the diffraction pattern and to use their computer calculations to consolidate the data into a plausible structural model. The alignments of the individual water molecules and their distances from each other prove that there are no interactions between them; they are bound only to the calcium sulfate framework. They are packed in so tightly that no further water molecules can enter into the channels of the basic structure. Variations of the crystal with a proportion of water molecules above 0.5 per formula unit thus seem to be very unlikely.

Author: Michael F. Bräu, BASF Construction Chemicals GmbH, Trostberg (Germany),

Title: How Much Water Does Calcined Gypsum Contain?

Angewandte Chemie International Edition 2009, 48, No. 19, 3520-3524, doi: 10.1002/anie.200900726

####

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

Relaunch of the Nanoscribe Website New design, optimized research, and impressive gallery of applications July 21st, 2014

Dongbu HiTek Unveils Low-Voltage BCDMOS Process for Efficient Power Management in Smart Phones and Tablet Computers July 21st, 2014

Iran to Host 1st Asian Congress on Nanostructures on Kish Island July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Chemistry

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Announcements

Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Iran to Host 1st Asian Congress on Nanostructures on Kish Island July 21st, 2014

Water

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Produced Water Absorbents, Inc. July 9th, 2014

LED Lamps Implemented in Removal of Pollutants from Water by Using Nanocatalysts July 1st, 2014

New particle-sorting method breaks speed records: Discovery could lead to new ways of detecting cancer cells or purifying contaminated water July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE