Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ordered Water: Just how much water is there in calcined gypsum?

Abstract:
Gypsum was used as a building material in antiquity and is still widely used as a binder in plaster, drywall, and spackling paste. Known as dihydrate in construction chemistry, gypsum is a water-containing calcium sulfate (CaSO4. 2 H2O).

Ordered Water: Just how much water is there in calcined gypsum?

Trostberg, Germany | Posted on April 16th, 2009

In various calcination processes, some of the water of crystallization is removed, resulting in calcined gypsum, or hemihydrate (CaSO4. 0.5 H2O). When this material comes into contact with water, it reabsorbs it and sets up. The structure and exact water content of hemihydrate have remained a matter of speculation.

Michael F. Bräu (BASF Construction Chemicals GmbH) and Horst Weiss (BASF SE) have now brought this speculation to an end: by using single-crystal structural analyses they were able to solve the structure, generate a structural model, and support it with computer calculations. As reported in the journal Angewandte Chemie, hemihydrate does indeed contain exactly one half of a water molecule per structural unit—tightly bound to the calcium sulfate framework.

Hemihydrate is the most heavily produced inorganic compound worldwide, so its structure and water content are of great interest, both economically and scientifically. The first structural model of this compound was proposed in 1933, and it still holds today. Since then, there have been a number of refined models, which do a good job of reproducing the fundamental calcium sulfate scaffold. However, there has always been disagreement about whether the water molecules also adopt a defined arrangement and if so, what it looks like.

Answering such questions requires structural analyses based on X-ray diffraction experiments carried out on single crystals of the right size and quality. The atoms of a crystal deflect incoming X-rays; the resulting characteristic diffraction pattern makes it possible to calculate the positions of the individual atoms in the crystal. However, this has been very difficult to achieve in the case of gypsum crystals. Bräu and Weiss have now been successful. By using various tricks they were able to interpret the diffraction pattern and to use their computer calculations to consolidate the data into a plausible structural model. The alignments of the individual water molecules and their distances from each other prove that there are no interactions between them; they are bound only to the calcium sulfate framework. They are packed in so tightly that no further water molecules can enter into the channels of the basic structure. Variations of the crystal with a proportion of water molecules above 0.5 per formula unit thus seem to be very unlikely.

Author: Michael F. Bräu, BASF Construction Chemicals GmbH, Trostberg (Germany),

Title: How Much Water Does Calcined Gypsum Contain?

Angewandte Chemie International Edition 2009, 48, No. 19, 3520-3524, doi: 10.1002/anie.200900726

####

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

3-D-printed jars in ball-milling experiments June 29th, 2017

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

Chemistry

3-D-printed jars in ball-milling experiments June 29th, 2017

Announcements

3-D-printed jars in ball-milling experiments June 29th, 2017

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

Water

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Plasmonics could bring sustainable society, desalination tech June 2nd, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project