Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Brown researchers create novel technique to sequence human genome

In this illustration, a DNA strand is leashed to a magnetized, iron-oxide bead, with a magnet hovering over it. As the bead moves toward the magnet, the DNA strand passes through nano-sized opening slowly enough that its base pairs can be read.

Credit: Hongbo Peng/IBM Research
In this illustration, a DNA strand is leashed to a magnetized, iron-oxide bead, with a magnet hovering over it. As the bead moves toward the magnet, the DNA strand passes through nano-sized opening slowly enough that its base pairs can be read.

Credit: Hongbo Peng/IBM Research

Abstract:
Since the human genome was sequenced six years ago, the cost of producing a high-quality genome sequence has dropped precipitously. More recently, the National Institutes of Health called for cutting the cost to $1,000 or less, which may enable sequencing as part of routine medical care.

Brown researchers create novel technique to sequence human genome

Providence, RI | Posted on April 16th, 2009

The obstacles to reaching that goal have been primarily technological: Scientists have struggled to figure out how to accurately read the 3 billion base pairs - the amount of DNA found in humans and other mammals - without time-consuming, inefficient methods.

Physicists at Brown University may have an answer. They introduce a novel procedure to vastly slow the DNA's movement through openings that are used to read the code. In the journal Nanotechnology, the physicists report the first experiment to move DNA through a solid-state nanopore using magnets. The approach is promising because it allows multiple segments of a DNA strand to be threaded simultaneously through numerous tiny pores and for each fragment to move slowly enough through the opening so that the base pairs can be accurately read.

"When it comes to sequencing anyone's genome, you need to do it cheaply, and you need to do it quickly," explained Xinsheng Sean Ling, professor of physics, who joined the Brown faculty in 1996. "This is a step in that direction."

The idea of reading DNA by threading strands through tiny openings is not new. Scientists have shown that an applied electric field can drive the DNA molecules through a nanopore, a tiny hole in a membrane. But in those experiments, the base pairs moved too quickly through the openings for the code to be read accurately. So, while a large electric field is needed to draw the DNA molecules into the pore, Ling explained, the same field moves the DNA too quickly, a classic scientific Catch-22.

The trick is to figure out how to slow the strands' movement through the opening so the base pairs (A, T, C, and G) can be read. To solve that, Ling and Hongbo Peng, the lead author who performed the work as a graduate student at Brown and who now works at IBM, attached the DNA strand to a bead using a streptavidin-biotin bond. Like previous researchers, they used an electric field to drive the DNA strand toward the pore. But while the strand could pass through the pore, the bead, with a 2.8-micron diameter, was too large for the pore, which has a diameter of only 10 nanometers. So the bead was stuck in the hole with the attached DNA strand suspended on the other side of the membrane.

The Brown researchers then used magnets — they call them "magnetic tweezers" — to draw the iron-oxide bead away from the pore. As the bead moves toward the magnets, the attached DNA strand moves through the pore — slowly enough so that the base pairs can be read.

The scientists named their process "reverse DNA translocation" because, as Ling explained, "the DNA is essentially caught in a tug-of-war. And the speed of translocation will be controlled not solely by the electric field but by striking some balance between the magnetic and the electric fields. From there, we can tune it to dictate the speed."

The scientists report their technique reduces the average speed of the DNA strand's passage by more than 2,000-fold. "It can be slower even. There is no limit," Ling said.

A similar experiment has been done using optical tweezers, Ling said, but it involves only one DNA strand at a time. The Brown method sends multiple strands through the nanopores simultaneously. "It is scalable," Ling said.

The researchers expect to test their technique in experiments using bacterial DNA.

The research was funded by the National Human Genome Research Institute and the National Science Foundation's Nanoscale Interdisciplinary Research Teams.

####

For more information, please click here

Contacts:
Richard Lewis

401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project