Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Brown researchers create novel technique to sequence human genome

In this illustration, a DNA strand is leashed to a magnetized, iron-oxide bead, with a magnet hovering over it. As the bead moves toward the magnet, the DNA strand passes through nano-sized opening slowly enough that its base pairs can be read.

Credit: Hongbo Peng/IBM Research
In this illustration, a DNA strand is leashed to a magnetized, iron-oxide bead, with a magnet hovering over it. As the bead moves toward the magnet, the DNA strand passes through nano-sized opening slowly enough that its base pairs can be read.

Credit: Hongbo Peng/IBM Research

Abstract:
Since the human genome was sequenced six years ago, the cost of producing a high-quality genome sequence has dropped precipitously. More recently, the National Institutes of Health called for cutting the cost to $1,000 or less, which may enable sequencing as part of routine medical care.

Brown researchers create novel technique to sequence human genome

Providence, RI | Posted on April 16th, 2009

The obstacles to reaching that goal have been primarily technological: Scientists have struggled to figure out how to accurately read the 3 billion base pairs - the amount of DNA found in humans and other mammals - without time-consuming, inefficient methods.

Physicists at Brown University may have an answer. They introduce a novel procedure to vastly slow the DNA's movement through openings that are used to read the code. In the journal Nanotechnology, the physicists report the first experiment to move DNA through a solid-state nanopore using magnets. The approach is promising because it allows multiple segments of a DNA strand to be threaded simultaneously through numerous tiny pores and for each fragment to move slowly enough through the opening so that the base pairs can be accurately read.

"When it comes to sequencing anyone's genome, you need to do it cheaply, and you need to do it quickly," explained Xinsheng Sean Ling, professor of physics, who joined the Brown faculty in 1996. "This is a step in that direction."

The idea of reading DNA by threading strands through tiny openings is not new. Scientists have shown that an applied electric field can drive the DNA molecules through a nanopore, a tiny hole in a membrane. But in those experiments, the base pairs moved too quickly through the openings for the code to be read accurately. So, while a large electric field is needed to draw the DNA molecules into the pore, Ling explained, the same field moves the DNA too quickly, a classic scientific Catch-22.

The trick is to figure out how to slow the strands' movement through the opening so the base pairs (A, T, C, and G) can be read. To solve that, Ling and Hongbo Peng, the lead author who performed the work as a graduate student at Brown and who now works at IBM, attached the DNA strand to a bead using a streptavidin-biotin bond. Like previous researchers, they used an electric field to drive the DNA strand toward the pore. But while the strand could pass through the pore, the bead, with a 2.8-micron diameter, was too large for the pore, which has a diameter of only 10 nanometers. So the bead was stuck in the hole with the attached DNA strand suspended on the other side of the membrane.

The Brown researchers then used magnets they call them "magnetic tweezers" to draw the iron-oxide bead away from the pore. As the bead moves toward the magnets, the attached DNA strand moves through the pore slowly enough so that the base pairs can be read.

The scientists named their process "reverse DNA translocation" because, as Ling explained, "the DNA is essentially caught in a tug-of-war. And the speed of translocation will be controlled not solely by the electric field but by striking some balance between the magnetic and the electric fields. From there, we can tune it to dictate the speed."

The scientists report their technique reduces the average speed of the DNA strand's passage by more than 2,000-fold. "It can be slower even. There is no limit," Ling said.

A similar experiment has been done using optical tweezers, Ling said, but it involves only one DNA strand at a time. The Brown method sends multiple strands through the nanopores simultaneously. "It is scalable," Ling said.

The researchers expect to test their technique in experiments using bacterial DNA.

The research was funded by the National Human Genome Research Institute and the National Science Foundation's Nanoscale Interdisciplinary Research Teams.

####

For more information, please click here

Contacts:
Richard Lewis

401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The International Space Elevator Consortium (ISEC) is proud to announce the 2014 Space Elevator Conference! This annual event will be held at the Museum of Flight in Seattle, Washington from Friday, August 22nd through Sunday, August 24th August 19th, 2014

KaSAM-2014 International Conference (September 7-10, 2014, Kathmandu, Nepal) August 19th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Nanomedicine

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Discoveries

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Announcements

Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE