Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Finding how carbon nanotubes work as catalysts could lead to cleaner fuels

Graphic by Aleksandr Kalininskiy
Graphic depiction of reactions occurring along a single-walled carbon nanotube converting a nonfluorescent molecule into a fluorescent one. An optical microscope will see fluorescent events as if they were coming from various points around the reaction site -- the upper part of the image shows how this looks through the microscope. But variations in brightness (shown here as different colors) allow researchers to pinpoint the reaction site to within as little as 20 nanometers.
Graphic by Aleksandr Kalininskiy
Graphic depiction of reactions occurring along a single-walled carbon nanotube converting a nonfluorescent molecule into a fluorescent one. An optical microscope will see fluorescent events as if they were coming from various points around the reaction site -- the upper part of the image shows how this looks through the microscope. But variations in brightness (shown here as different colors) allow researchers to pinpoint the reaction site to within as little as 20 nanometers.

Abstract:
Among their many other interesting properties, carbon nanotubes have been found to act as catalysts for some important chemical reactions, including some that could be used to make cleaner fuels. But many unanswered questions remain about how this process works.

Finding how carbon nanotubes work as catalysts could lead to cleaner fuels

Ithaca, NY | Posted on April 16th, 2009

Cornell researchers have answered an important one by pinpointing unique sites where the reactions take place on single-walled nanotubes. But directly observing these sites has been challenging, but now, the researchers have shown that the reactions do not occur all along the tubes, but at the ends of the tubes or at defects along the tubes.

The research by Peng Chen, Cornell assistant professor of chemistry and chemical biology, and his research group was reported April 14 in the online edition of the journal Nano Letters and will appear in a forthcoming print edition.

Carbon nanotubes are microscopic cylinders with walls made of carbon atoms arranged in connected hexagons, somewhat like a rolled up tube of chicken wire. A typical nanotube is a few nanometers (nm) in diameter and several microns long. (A nanometer is one-billionth of a meter, about as long as three atoms in a row. A micron is one-millionth of a meter, or about three times the diameter of a human hair.) Chen's observations have located catalytic reaction sites to within about 20 nm.

Nanotubes act as catalysts when an electric current is passed through them. This enables them to donate electrons to molecules that come in contact with the reaction sites. The reaction is similar to what happens in fuel cells, Chen said, so further research may help in making better fuel cells.

Other researchers at Cornell and elsewhere have shown that carbon nanotubes can be made into transistors. Thus, one long-range goal, Chen added, is to make them into photoelectrochemical cells that would use sunlight directly to make hydrogen.

"We want to use photons to make electrons, then use the electrons in a water-splitting reaction to make hydrogen," he explained, noting that this would help deal with the storage and transportation problems that have hindered the use of solar energy.

Fortuitously, another reaction that carbon nanotubes can catalyze changes a chemical called resazurin into another, resorufin, that is fluorescent. Under a microscope, tiny flashes of light reveal when and where the fluorescent molecules have been created.

Chen's research group trapped an array of nanotubes between transparent conductors in a solution of resazurin and made a "movie" with an exposure every 100 milliseconds over tens of minutes after applying a voltage to start the catalytic reaction. A scattering of bright dots in each frame shows that the reactions are not happening all along the tubes.

Each dot is made up of thousands of photons, and because a light microscope typically cannot resolve features smaller than the wavelength of the light used -- in this case about 400 nm -- they appear scattered. So the researchers used an ingenious mathematical trick, plotting the rise and fall of brightness across each fuzzy dot to pinpoint the center. Think of finding the center aiming point of a shotgun by measuring the distribution of the pellets. Finally they superimposed the centers from all the frames of the movie and repeated the process to refine the locations to within 20 nanometers or less.

"The question now is what are the chemical natures of the reaction sites," Chen said. "Can we see how the electron transfer works?" Now that the sites can be located, he said, it will be possible to use high-resolution scanning tunneling microscopy to observe their atomic structure and relate their structure to electron transfer properties.

The research is supported by a Petroleum Research Foundation grant and by the Cornell Center for Materials Research, which is funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Chemistry

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Clarifiying complex chemical processes with quantum computers August 3rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Possible Futures

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Environment

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project