Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Finding how carbon nanotubes work as catalysts could lead to cleaner fuels

Graphic by Aleksandr Kalininskiy
Graphic depiction of reactions occurring along a single-walled carbon nanotube converting a nonfluorescent molecule into a fluorescent one. An optical microscope will see fluorescent events as if they were coming from various points around the reaction site -- the upper part of the image shows how this looks through the microscope. But variations in brightness (shown here as different colors) allow researchers to pinpoint the reaction site to within as little as 20 nanometers.
Graphic by Aleksandr Kalininskiy
Graphic depiction of reactions occurring along a single-walled carbon nanotube converting a nonfluorescent molecule into a fluorescent one. An optical microscope will see fluorescent events as if they were coming from various points around the reaction site -- the upper part of the image shows how this looks through the microscope. But variations in brightness (shown here as different colors) allow researchers to pinpoint the reaction site to within as little as 20 nanometers.

Abstract:
Among their many other interesting properties, carbon nanotubes have been found to act as catalysts for some important chemical reactions, including some that could be used to make cleaner fuels. But many unanswered questions remain about how this process works.

Finding how carbon nanotubes work as catalysts could lead to cleaner fuels

Ithaca, NY | Posted on April 16th, 2009

Cornell researchers have answered an important one by pinpointing unique sites where the reactions take place on single-walled nanotubes. But directly observing these sites has been challenging, but now, the researchers have shown that the reactions do not occur all along the tubes, but at the ends of the tubes or at defects along the tubes.

The research by Peng Chen, Cornell assistant professor of chemistry and chemical biology, and his research group was reported April 14 in the online edition of the journal Nano Letters and will appear in a forthcoming print edition.

Carbon nanotubes are microscopic cylinders with walls made of carbon atoms arranged in connected hexagons, somewhat like a rolled up tube of chicken wire. A typical nanotube is a few nanometers (nm) in diameter and several microns long. (A nanometer is one-billionth of a meter, about as long as three atoms in a row. A micron is one-millionth of a meter, or about three times the diameter of a human hair.) Chen's observations have located catalytic reaction sites to within about 20 nm.

Nanotubes act as catalysts when an electric current is passed through them. This enables them to donate electrons to molecules that come in contact with the reaction sites. The reaction is similar to what happens in fuel cells, Chen said, so further research may help in making better fuel cells.

Other researchers at Cornell and elsewhere have shown that carbon nanotubes can be made into transistors. Thus, one long-range goal, Chen added, is to make them into photoelectrochemical cells that would use sunlight directly to make hydrogen.

"We want to use photons to make electrons, then use the electrons in a water-splitting reaction to make hydrogen," he explained, noting that this would help deal with the storage and transportation problems that have hindered the use of solar energy.

Fortuitously, another reaction that carbon nanotubes can catalyze changes a chemical called resazurin into another, resorufin, that is fluorescent. Under a microscope, tiny flashes of light reveal when and where the fluorescent molecules have been created.

Chen's research group trapped an array of nanotubes between transparent conductors in a solution of resazurin and made a "movie" with an exposure every 100 milliseconds over tens of minutes after applying a voltage to start the catalytic reaction. A scattering of bright dots in each frame shows that the reactions are not happening all along the tubes.

Each dot is made up of thousands of photons, and because a light microscope typically cannot resolve features smaller than the wavelength of the light used -- in this case about 400 nm -- they appear scattered. So the researchers used an ingenious mathematical trick, plotting the rise and fall of brightness across each fuzzy dot to pinpoint the center. Think of finding the center aiming point of a shotgun by measuring the distribution of the pellets. Finally they superimposed the centers from all the frames of the movie and repeated the process to refine the locations to within 20 nanometers or less.

"The question now is what are the chemical natures of the reaction sites," Chen said. "Can we see how the electron transfer works?" Now that the sites can be located, he said, it will be possible to use high-resolution scanning tunneling microscopy to observe their atomic structure and relate their structure to electron transfer properties.

The research is supported by a Petroleum Research Foundation grant and by the Cornell Center for Materials Research, which is funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Chemistry

Chains of nanogold – forged with atomic precision September 23rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Researchers build world's largest database of crystal surfaces and shapes September 14th, 2016

On-surface chemistry leads to novel products: On-surface chemical Reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. September 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Possible Futures

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Announcements

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Environment

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes: This research article by Dr. Subhash Basak et al. will be published in Current Computer-Aided Drug Design, Volume 12, 2016 September 2nd, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Energy

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic