Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > "Two-handed" Marine Microbes Point to New Method for Isolating Harmful Forms of Chemicals

This microfluidic device was used to discover new information about marine bacteria.

Credit: Roman Stocker, MIT
This microfluidic device was used to discover new information about marine bacteria.

Credit: Roman Stocker, MIT

Abstract:
Major impact envisioned for pharmaceutical, food, agriculture industries

"Two-handed" Marine Microbes Point to New Method for Isolating Harmful Forms of Chemicals

Arlington, VA | Posted on April 16th, 2009

Scientists studying how marine bacteria move have discovered that a sharp variation in water current segregates right-handed bacteria from their left-handed brethren, impelling the microbes in opposite directions.

This finding and the possibility of quickly and cheaply implementing the segregation of two-handed objects in the laboratory could have a big impact on industries like the pharmaceutical industry, for which the separation of right-handed from left-handed molecules can be crucial to drug safety.

"This is a remarkable example of how basic research, initially focused on understanding how bacteria interact with their environment, can lead to discoveries far beyond that envisioned," said David Garrison, director of the National Science Foundation (NSF)'s Biological Oceanography Program, which funded the research.

While single-celled bacteria do not have hands, their helical-shaped flagella spiral either clockwise or counter-clockwise, making opposite-turning flagella similar to human hands in that they create mirror images of one another.

This two-handed quality is called chirality, and in a molecule, it can make the difference between healing and harming the human body.

"This discovery could impact our understanding of how water currents affect ocean microbes, particularly with respect to their ability to forage for food, since chiral effects make them drift off-course," said Roman Stocker, a marine scientist at MIT and lead investigator on the research project. "But it is also important for several industries that rely on the ability to separate two-handed molecules."

Stocker and graduate student Marcos, along with co-authors Henry Fu and Thomas Powers of Brown University, published their findings in the April 17 issue of the journal Physical Review Letters.

One of the best-known instances of a chiral molecule causing widespread harm occurred in the 1950s, when the drug thalidomide was given to pregnant women to prevent morning sickness.

One naturally occurring form--or isomer--of thalidomide reduces nausea; the other causes birth defects. In another commonly used chiral drug, naproxen, one isomer is analgesic; the other causes liver damage.

In their paper, the researchers describe how they designed a microfluidic environment--a device about the size of an iPod nano that has channels containing water and bacteria--to create a "shear" flow of layers of water moving at different speeds.

In their tests, Stocker and Marcos used a non-motile mutant of the bacterium Leptospira biflexa, whose entire body has the shape of a right-handed helix.They injected the Leptospira into the center of the microfluidic device and demonstrated that the bacteria drift off-course in a direction dictated by their chirality.

The researchers also developed a mathematical model of the process, and are implementing this new approach to separate objects at molecular scales.

"The methods currently used to separate chiral molecules are far more expensive and far slower than the microfluidic option," said Marcos.

"While we still have a way to go to separate actual chiral molecules, we think our work is very promising for the agriculture, food and pharmaceutical industries."

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Cheryl Dybas
NSF
(703) 292-7734


Denise Brehm
MIT
(617) 253-8069

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pixelligent Launches New PixClearŽ Light Extraction Materials for OLED Lighting August 4th, 2015

The annual meeting on High Power Diode Lasers & Systems will be held as part of the Enlighten Conference, October 14th & 15th August 4th, 2015

Atomic view of microtubules: Berkeley Lab researchers achieve record 3.5 angstroms resolution and visualize action of a major microtubule-regulating protein August 4th, 2015

World's quietest gas lets physicists hear faint quantum effects August 4th, 2015

Microfluidics/Nanofluidics

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology July 7th, 2015

Lehigh University researchers unveil engineering innovations at TechConnect 2015: TechConnect is the world's largest accelerator for industry-vetted emerging-technologies ready for commercialization June 11th, 2015

How to cut a vortex into slices: A group of physicists, lead by Olga Vinogradova, professor at the Lomonosov Moscow State University, came up with a way to stir up a liquid in the microchannel June 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Atomic view of microtubules: Berkeley Lab researchers achieve record 3.5 angstroms resolution and visualize action of a major microtubule-regulating protein August 4th, 2015

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Vaccine with virus-like nanoparticles effective treatment for RSV, study finds August 3rd, 2015

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Discoveries

Atomic view of microtubules: Berkeley Lab researchers achieve record 3.5 angstroms resolution and visualize action of a major microtubule-regulating protein August 4th, 2015

World's quietest gas lets physicists hear faint quantum effects August 4th, 2015

Artificial blood vessels become resistant to thrombosis August 4th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Announcements

Artificial blood vessels become resistant to thrombosis August 4th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Food/Agriculture/Supplements

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

QuantumSphere Completes State-of-the-Art Nanocatalyst Production Facility: Now Positioned to Capitalize on Commercial Validation and JDA with Casale, SA July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project