Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > RNT Develops Ruthenium Sputter Target Bonding Method

Abstract:
Reactive NanoTechnologies, Inc. (RNT), developer and manufacturer of its patented NanoFoil®, announced that it has developed a bonding solution using NanoBond® for ruthenium (Ru) sputtering targets bonded to metal backing plates that does not require the use of backside metallization (BSM). Ruthenium is a technology enabler for what is known as perpendicular recording in hard disk drives, allowing more bits of information to be recorded in a smaller space, thus increasing storage capacity.

RNT Develops Ruthenium Sputter Target Bonding Method

HUNT VALLEY, MD | Posted on April 15th, 2009

Traditional indium reflow bonding of Ru sputtering targets to metal backing plates requires the use of BSM. BSM of the bonding face of a Ru target is usually achieved by sputter deposition of a multilayer coating that acts as a diffusion barrier between the Ru and the indium solder and also enhances adhesion of indium solder. BSM thus represents an extra processing step that can add to lead time and increase costs for sputter target bonding.

The NanoBond® process of sputtering targets uses NanoFoil® to provide a localized heat source that reflows pre-applied solder layers on the target and the backing plate. Since the heat is localized to the solder layers, the target and backing plate are bonded at room temperature. This in turn allows NanoBond® to be compatible with tin (Sn) based solders that have significantly higher melting temperatures compared to indium. Sn can be applied directly to the bonding surface of Ru targets with the aid of acid flux.

RNT has conducted aging studies demonstrating that there is no significant diffusion of Sn into Ru. The diffusion distance of Sn into Ru after aging at 100ºC for 120 hours, is less than 2 µm. The integrity of the bond was confirmed with ultrasonic scanning and strength testing. Bond coverage was measured to be 99 % and shear strength of 27 MPa was measured with failure occurring exclusively in the Sn solder.

"The NanoBond® process is robust in that has different benefits for different materials," stated RNT's Global Vice President of Sales, Mike O'Neill. "The ability to eliminate the need for a back side metallization is another instance where NanoBond® can simplify the sputter target bonding process."

####

About Reactive NanoTechnologies, Inc. (RNT)
Headquartered in Hunt Valley, Maryland, Reactive NanoTechnologies, Inc. (RNT) was founded in 2001 to develop and manufacture its patented technology, NanoFoil®.

NanoFoil® is used to precisely control the instantaneous release of heat energy for advanced joining applications providing superior performance and value to the user. The company has also developed its patented NanoBond® joining process to simplify manufacturing and ensure the benefits of NanoFoil® are maximized. NanoBond® is used today to bond sputter targets and in several electronics assembly applications including LED assembly and thermal management. Mass production of NanoFoil® is taking place from RNT’s onsite manufacturing facilities, supported by a worldwide sales, applications support, and distribution network. RNT continues to expand its customer base and has entered into licensing agreements with a number of Fortune 500 Companies. Its breakthrough technology has also earned several prestigious awards including the 2005 “R&D 100” from R&D Magazine, the 2005 Nano 50™ from NASA Nanotech Briefs Magazine and recognition in The National Nanotechnology Initiative Strategic Plan in December 2004.

For more information, please click here

Contacts:
Reactive NanoTechnologies, Inc.
180 Lake Front Drive
Hunt Valley, MD 21030
Phone: 410-771-9801
Fax: 410-771-0586

Copyright © Reactive NanoTechnologies, Inc. (RNT)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pixelligent Launches New PixClear® Light Extraction Materials for OLED Lighting August 4th, 2015

The annual meeting on High Power Diode Lasers & Systems will be held as part of the Enlighten Conference, October 14th & 15th August 4th, 2015

Atomic view of microtubules: Berkeley Lab researchers achieve record 3.5 angstroms resolution and visualize action of a major microtubule-regulating protein August 4th, 2015

World's quietest gas lets physicists hear faint quantum effects August 4th, 2015

Memory Technology

Small tilt in magnets makes them viable memory chips August 3rd, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Announcements

Artificial blood vessels become resistant to thrombosis August 4th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project