Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UC Santa Barbara Collaboration Receives $6.1 Million for Diamond-based Quantum Information Processing and Communication

David Awschalom

credit: Rod Rolle
David Awschalom
credit: Rod Rolle

Abstract:
In the quest for quantum information processing, diamonds may be a physicist's best friend.

According to scientists at University of California, Santa Barbara, diamonds could revolutionize the field of quantum mechanics in computing by leading to ultra-secure communication, lightning-fast database searches, and code-cracking ability.

UC Santa Barbara Collaboration Receives $6.1 Million for Diamond-based Quantum Information Processing and Communication

Santa Barbara, CA | Posted on April 15th, 2009

Two government funding agencies are putting $6.1 million into a pair of research projects aimed at utilizing diamond for quantum communication processing. UCSB is leading the charge on both efforts, due to dramatic developments in quantum physics in the past decade at the university.

"We are extremely excited by the rapid pace of discoveries in this emerging area of science and technology. This vital support offers extraordinary collaborative research opportunities for students to engage at the frontiers of the field in areas spanning fundamental physics to materials science," said David Awschalom, principal investigator for both projects and professor of physics and electrical and computer engineering at UCSB. He also serves as director of UCSB's California NanoSystems Institute (CNSI), and directs UCSB's Center for Spintronics and Quantum Computation.

The funding will go to a research collaboration involving CNSI, Hewlett-Packard Research Labs, and a team of faculty from Lawrence Berkeley National Laboratory, Harvard University, Massachusetts Institute of Technology, the University of Iowa, and the Delft University of Technology. The granting organizations are the Defense Advanced Research Projects Agency (DARPA) and the Air Force Office of Scientific Research (AFOSR).

At the quantum level, things like particles or light waves behave very differently from what scientists expect in a human-scale world. In the quantum world, for example, an electron can exist in two places at the same time, what is called a "superposition" of states; it can "spin up" and "spin down" at the same time.

For many years, scientists at UCSB have tackled the problem of unraveling how the world in which we live emerges from all the interacting quantum particles in matter. This scientific query surrounds the basic quantum dynamics of a single particle spin coupled to a collection, or "bath," of random spins. This scenario describes the underlying behavior of a broad class of materials around us, ranging from quantum spin tunneling in magnetic molecules, to nuclear magnetic resonance in semiconductors.

The current projects will focus on developing new quantum measurement techniques to manipulate and read out single electron spins in diamond. The projects will also focus on the on-chip integration of single electron spins with photonics, for communication. Additionally, the project aims to build a world-class research facility for the creation of synthetic crystal diamond and diamond heterostructure materials and devices. Diamonds fabricated by the team will complement many ongoing research initiatives on campus and around the world, including programs working towards solid-state lighting, nanoelectronics, and atomic-level storage.

Quantum information processing is an emerging field with the capacity for extremely rapid computation and transmission of secure messages via quantum cryptography. The present limits on these developments depend on highly controlled environments, impeccable fabrication of nanostructures, and extreme accuracy in the simultaneous spin of the quantum objects involved. The CNSI-based research team has developed several experimental techniques that offer potential solutions to real-world implementations of these processes, along with the exploration of many fundamental scientific questions surrounding the quantum measurements of matter. Potential results may lead to vast advances in the field -- including the ability to provide secure quantum communication over intercontinental distances.

####

About University of California, Santa Barbara

CNSI at UCSB provides a multidisciplinary approach to research in order to develop the information, biomedical, and manufacturing technologies that will dominate science and economy in the 21st century.

The UCSB team includes Andrew Cleland, professor of physics; Evelyn Hu, professor of electrical & computer engineering and materials; Steven DenBaars, professor of materials and electrical & computer engineering; Umesh Mishra, professor of electrical & computer engineering; Shuji Nakamura, professor of materials; Christopher Palmstrom, professor of materials and electrical & computer engineering; Susanne Stemmer, professor of materials; and, Chris Van der Walle, professor of materials. Another collaborator is Ronald Hanson, a recent CNSI postdoctoral fellow, who is now a professor at the Kavli Institute on Nanoscience at the Delft University of Technology in the Netherlands.

For more information, please click here

Contacts:
David Awschalom
805-893-2121


For media assistance, contact
Gail Gallessich
805-893-7220

or
George Foulsham
805-893-3071

Copyright © University of California, Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

East China University of Science and Technology Purchases Nanonex Advanced Nanoimprint Tool NX-B200 July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Quantum Computing

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Harris & Harris Group Portfolio Company D-Wave Systems Closes a $28.4 Million Financing July 14th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Announcements

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Quantum nanoscience

Measuring the Smallest Magnets July 28th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Bending the rules: A UCSB postdoctoral scholar in physics discovers a counterintuitive phenomenon: the coexistence of superconductivity with dissipation June 29th, 2014

Singapore Researchers Use FEI Titan S/TEM to Link Plasmonics with Molecular Electronics: As described in the March 28 issue of Science, researchers discover quantum plasmonic tunneling – a phenomenon that may eventually lead to new, ultra-fast electrical circuits June 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE