Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Life Expectancy on the Rise - Even for Quantum States

"Time to relax: Intersubband relaxation time indicates the timeframe within which excited charge carriers remain at an elevated energy level before returning to their original state."

Credit: DI Patrick Rauter
"Time to relax: Intersubband relaxation time indicates the timeframe within which excited charge carriers remain at an elevated energy level before returning to their original state."
Credit: DI Patrick Rauter

Abstract:
For the first time, scientists have succeeded in measuring and controlling the lifetime of quantum states with potential use in optoelectronic chips. This achievement is highly significant for the ongoing development of this cutting-edge technology. The breakthrough involved measuring the intersubband relaxation time of charge states in silicon-germanium SiGe structures on a picosecond scale. Experiments have also shown that it is possible to control and extend these times. As a result, this body of work - currently published in Physical Review Letters and supported by the Austrian Science Fund FWF - represents a major advance in the development of data processing based on optoelectronic chips.

Life Expectancy on the Rise - Even for Quantum States

Vienna, Austria | Posted on April 14th, 2009

Transmitting information via light quanta (photons) is nothing new. That is precisely what every fibre optic cable does with exceptional efficiency. But the process that is both ultra fast and reliable over long distances fails when used in close quarters. At present, photon-based chip-to-chip communication is not possible in data processing. The problem is the photon sources. Due to its semiconductor structure, the raw material currently used to manufacture computer chips - silicon - does not allow the generation of photons by conventional means. However, unconventional means may provide a solution - and that is precisely what the group from the Institute of Semiconductor and Solid State Physics at the University of Linz is working on.

Laser on a Chip
One potential solution could be a quantum cascade laser based on a silicon-germanium (SiGe) heterostructure, which could allow the use of quantum-physical effects to generate laser light in the infrared range. "There are currently numerous fundamental issues that need to be clarified in terms of the way that SiGe heterostructures work and how they can be controlled," explains DI Patrick Rauter, a member of the group lead by Dr. Thomas Fromherz that is working on the use of these structures for optical applications. One key parameter is the intersubband relaxation time. This indicates the timeframe within which excited charge carriers of the SiGe remain at an elevated energy level before returning to their original state. The duration of this period is a key factor for the quantum cascade laser, as the length of time the charge carriers are in a state of excitation is closely linked with their capacity to emit light.

DI Rauter and his colleagues have now succeeded in accurately measuring this timeframe. They were supported in their work by the Foundation for Fundamental Research Matter - FOM, based in Rijnhuizen, Netherlands - and its free-electron laser FELIX. The laser beam of this device can be pulsed in picoseconds, which means it can be used to measure extremely fast processes.

Fractions of a Fraction of a Second
Using an experimental design, the group succeeded in determining that the intersubband relaxation time lasts for between 12 and 25 picoseconds, or 12 to 25 trillionths of a second. The laser beam of FELIX was split to allow the group to measure these extraordinarily short spaces of time. One beam was used to excite the charge carriers in the SiGe while the other - after a time delay - performed the actual measurement. During this process, a photoelectric current - which is determined by the intersubband relaxation time - was measured. DI Rauter on the measurements: "We were also able to extend the intersubband relaxation lifetime in a controlled manner. To do this, we applied an external electrical field to the sample. By altering this field, we were able to continuously tune the relaxation time between 12 and 25 picoseconds. In actual fact, we succeeded in doubling the relaxation time - a highly promising result."

Published in Physical Review Letters, the work also forms part of the FWF special research program IR-ON (InfraRed Optical Nanostructures). A total of ten working groups from Austria and Germany contribute to this program, which focuses amongst other semiconductors on SiGe compounds with nanostructures that should be conducive for use in optoelectronic chips. The work conducted by DI Rauter and his colleagues has enabled the program to move a quantum leap - or one small step - closer to this goal.

Original publication: Continuous Voltage Tunability of Intersubband Relaxation Times in Coupled Well Structures. P. Rauter, T. Fromherz, N. Q. Vinh, B. N. Murdin, G. Mussler, D. Grützmacher & G. Bauer, Phys. Rev. Lett. 102, 147401 (2009) DOI: 10.1103/PhysRevLett.102.147401

####

For more information, please click here

Contacts:
Scientific contact
DI. Patrick Rauter
University of Linz
Institute of Semiconductor and Solid State Physics
Altenbergerstr. 69
4040 Linz /Austria
Austria
T: T +43 / 650 / 2041693
E
E

Austrian Science Fund FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
Austria
T +43 / 1 / 505 67 40 - 8111
E

Copy Editing & Distribution
PR&D - Public Relations for Research & Education
Campus Vienna Biocenter 2
1030 Vienna
Austria
T +43 / 1 / 505 70 44
E

Copyright © Austrian Science Fund FWF

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Optical Computing

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Nanosheets and nanowires April 1st, 2014

Unavoidable disorder used to build nanolaser March 25th, 2014

A mathematical equation that explains the behavior of nanofoams March 22nd, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Quantum nanoscience

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Quantum Photon Properties Revealed in Another Particle—the Plasmon April 5th, 2014

Notre Dame researchers provide new insights into quantum dynamics and quantum chaos April 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE