Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists Engineer the Picture-Perfect Classical Atom

Abstract:
Picture the textbook atom. It would resemble a miniature solar system — an atomic nucleus orbited by electrons, drawn in nice tidy elliptical orbits — like planets orbiting the Sun. This is a reasonable classical depiction of an atom, but it is completely at odds with the usual quantum description of an atom. Now, a University of Virginia physicist has engineered, in a sense, the classical picture-perfect textbook atom.

Physicists Engineer the Picture-Perfect Classical Atom

Charlottesville, VA | Posted on April 13th, 2009

In the quantum energy states of a one-electron atom, the electron does not move in an orbit, but is described by a wave function, which, when squared, produces a probability cloud about the nucleus which does not change in time.

The electron can be in any given place at any given time, and at all places at once. That is quantum mechanics, an arena of physics so strange and complicated, even physicists admit it is hard to picture.

But University of Virginia physicist Tom Gallagher and his colleagues have engineered, in a sense, the classical picture-perfect textbook atom.

The physicists used a weak microwave field to lock together the time-dependent phase evolutions of the wave functions of several energy states. If only one energy state's wave function is present, its phase is of no consequence; but if there are two or more, the phases matter.

At any given time the wave functions add in one region of space and cancel in another. When the composite wave function is squared, the probability is localized, and it moves, just like the classical atom we picture.

Gallagher and his team recently published their results in Physical Review Letters (volume 102, page 103001).

Researchers at the University of Rochester originally suggested that making such classical atoms might be possible, noting the similarity to Lagrange points — regions of space where gravity from a variety of points, such as planets, affect the orbits of other bodies in space, and can cancel out distant sources of gravity.

To realize such atoms in the laboratory, Gallagher and his team struck upon the idea of first locking the motion of an electron to a linearly polarized field, producing an atom in which the electron oscillates along a line, and then altering the microwave polarization to circular. The electron orbit follows the changing polarization, becoming a circular orbit.

"We honestly were quite surprised by how well we could manipulate the atom with our technique," Gallagher said. "We demonstrated that we can change the state of the atom in a way that was once considered impossible."

Carlos Stroud, a physicist at the University of Rochester, marveled at the quality of Gallagher's work in a commentary for the publication Physics; and he later described the experiment as "a beautiful piece of physics" for the magazine New Scientist.

Gallagher's co-authors are U.Va. graduate student Joshua Gurian and Haruka Maeda, now of the Japan Science and Technology Agency.

####

For more information, please click here

Contacts:
Fariss Samarrai
434-924-3778

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Physics

New breed of optical soliton wave discovered September 9th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Discoveries

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Announcements

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Quantum nanoscience

Chains of nanogold – forged with atomic precision September 23rd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic