Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Physicists Engineer the Picture-Perfect Classical Atom

Abstract:
Picture the textbook atom. It would resemble a miniature solar system — an atomic nucleus orbited by electrons, drawn in nice tidy elliptical orbits — like planets orbiting the Sun. This is a reasonable classical depiction of an atom, but it is completely at odds with the usual quantum description of an atom. Now, a University of Virginia physicist has engineered, in a sense, the classical picture-perfect textbook atom.

Physicists Engineer the Picture-Perfect Classical Atom

Charlottesville, VA | Posted on April 13th, 2009

In the quantum energy states of a one-electron atom, the electron does not move in an orbit, but is described by a wave function, which, when squared, produces a probability cloud about the nucleus which does not change in time.

The electron can be in any given place at any given time, and at all places at once. That is quantum mechanics, an arena of physics so strange and complicated, even physicists admit it is hard to picture.

But University of Virginia physicist Tom Gallagher and his colleagues have engineered, in a sense, the classical picture-perfect textbook atom.

The physicists used a weak microwave field to lock together the time-dependent phase evolutions of the wave functions of several energy states. If only one energy state's wave function is present, its phase is of no consequence; but if there are two or more, the phases matter.

At any given time the wave functions add in one region of space and cancel in another. When the composite wave function is squared, the probability is localized, and it moves, just like the classical atom we picture.

Gallagher and his team recently published their results in Physical Review Letters (volume 102, page 103001).

Researchers at the University of Rochester originally suggested that making such classical atoms might be possible, noting the similarity to Lagrange points — regions of space where gravity from a variety of points, such as planets, affect the orbits of other bodies in space, and can cancel out distant sources of gravity.

To realize such atoms in the laboratory, Gallagher and his team struck upon the idea of first locking the motion of an electron to a linearly polarized field, producing an atom in which the electron oscillates along a line, and then altering the microwave polarization to circular. The electron orbit follows the changing polarization, becoming a circular orbit.

"We honestly were quite surprised by how well we could manipulate the atom with our technique," Gallagher said. "We demonstrated that we can change the state of the atom in a way that was once considered impossible."

Carlos Stroud, a physicist at the University of Rochester, marveled at the quality of Gallagher's work in a commentary for the publication Physics; and he later described the experiment as "a beautiful piece of physics" for the magazine New Scientist.

Gallagher's co-authors are U.Va. graduate student Joshua Gurian and Haruka Maeda, now of the Japan Science and Technology Agency.

####

For more information, please click here

Contacts:
Fariss Samarrai
434-924-3778

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Physics

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Discoveries

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Quantum nanoscience

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Bending the rules: A UCSB postdoctoral scholar in physics discovers a counterintuitive phenomenon: the coexistence of superconductivity with dissipation June 29th, 2014

Singapore Researchers Use FEI Titan S/TEM to Link Plasmonics with Molecular Electronics: As described in the March 28 issue of Science, researchers discover quantum plasmonic tunneling – a phenomenon that may eventually lead to new, ultra-fast electrical circuits June 24th, 2014

New quantum mechanism to trigger the emission of tunable light at terahertz frequencies June 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE