Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > World’s First Nanofluidic Device with Complex 3-D Surfaces Built

(A) Schematic of the NIST-Cornell nanofluidic device with complex 3-D surfaces. Each “step” of the “staircase” seen on the side marks a different depth within the chamber. The letter “E” shows the direction of the electric field used to move the nanoparticles through the device. The green balls are spheres with diameters of 100 nanometers whose size restricts them from moving into the shallower regions of the chamber. The coil in the deep end of the chamber (upper right corner) is a single DNA strand that elongates (upper left corner) in the shallow end.
(B) Photomicrograph showing fluorescently tagged spherical nanoparticles stopped at the 100-nanometer level of the chamber, the depth that corresponds to their diameter.
(C) Photomicrograph of a single DNA strand that is coiled in the deep end of chamber (box at far right) and elongated in the shallow end (box at far left). Larger boxes are closeups showing the fluorescently tagged strands.

Credit: NIST
(A) Schematic of the NIST-Cornell nanofluidic device with complex 3-D surfaces. Each “step” of the “staircase” seen on the side marks a different depth within the chamber. The letter “E” shows the direction of the electric field used to move the nanoparticles through the device. The green balls are spheres with diameters of 100 nanometers whose size restricts them from moving into the shallower regions of the chamber. The coil in the deep end of the chamber (upper right corner) is a single DNA strand that elongates (upper left corner) in the shallow end. (B) Photomicrograph showing fluorescently tagged spherical nanoparticles stopped at the 100-nanometer level of the chamber, the depth that corresponds to their diameter. (C) Photomicrograph of a single DNA strand that is coiled in the deep end of chamber (box at far right) and elongated in the shallow end (box at far left). Larger boxes are closeups showing the fluorescently tagged strands.

Credit: NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) and Cornell University have capitalized on a process for manufacturing integrated circuits at the nanometer (billionth of a meter) level to engineer the first-ever nanoscale fluidic device with complex three-dimensional surfaces. As described in a recent paper in the journal Nanotechnology,* the Lilliputian chamber is a prototype for future tools with custom-designed surfaces to manipulate and measure different types of nanoparticles in solution.

World’s First Nanofluidic Device with Complex 3-D Surfaces Built

Gaithersburg, MD | Posted on April 12th, 2009

Among the potential applications are processing nanoscale materials for manufacturing products such as pharmaceuticals, sorting mixtures of nanoparticles for environmental health and safety investigations, and isolating and confining individual DNA strands for scientific study.

Nanofluidic devices are usually fabricated by etching tiny channels into a glass or silicon wafer with the same "lithographic" procedures used for making integrated circuits. To date, these flat rectangular channels have had simple surfaces with only a few depths. This limits their ability to separate mixtures of nanoparticles with different sizes or study the nanoscale behavior of biomolecules (such as DNA) in detail.

To solve the problem, the researcher team developed a lithographic process to fabricate complex 3-D surfaces. To demonstrate their method, they constructed a nanofluidic chamber with a "staircase" geometry etched into the floor. The "steps" in this staircase—each level giving the device a progressively increasing depth from 10 nanometers (about 6,000 times smaller than the width of a human hair) at the top to 620 nanometers at the bottom—are what give the device its ability to manipulate nanoparticles by size in the same way a coin sorter separates nickels, dimes and quarters.

In these novel experiments, the researchers tested their device with two different solutions: one containing 100-nanometer-diameter polystyrene spheres and the other containing 20-micrometer (millionth of a meter)-length DNA molecules from a virus. In each experiment, the researchers injected the solution into the chamber's deep end and then used electric fields to drive their sample across the device from deeper to shallower levels. Both the spheres and DNA strands were tagged with fluorescent dye so that their movements could be tracked with a microscope.

In the trials using rigid nanoparticles, size exclusion occurred when the region of the chamber where the channels were less than 100 nanometers in depth stayed free of the particles. In the viral DNA trials, the genetic material was coiled in the deeper channels and elongated when forced into the shallower ones. These results demonstrate the utility of the NIST-Cornell 3-D nanofluidic device to perform more complicated nanoscale operations.

Currently, the researchers are working to separate and measure mixtures of different-sized nanoparticles and investigate the behavior of DNA captured in a 3-D nanofluidic environment. For more information and images, see "NIST-Cornell Team Builds World's First Nanofluidic Device with Complex 3-D Surfaces."

* S.M. Stavis, E.A. Strychalski and M.Gaitan. Nanofluidic structures with complex three-dimensional surfaces. Nanotechnology Vol. 20, Issue 16 (online March 31, 2009; in print April 22, 2009).

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Michael E. Newman

(301) 975-3025

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“NIST-Cornell Team Builds World’s First Nanofluidic Device with Complex 3-D Surfaces.”

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Microfluidics/Nanofluidics

Toward a new way to keep electronics from overheating July 2nd, 2014

New particle-sorting method breaks speed records: Discovery could lead to new ways of detecting cancer cells or purifying contaminated water July 1st, 2014

Micro-manufacturing breakthrough is wired for sound June 24th, 2014

Fully automated DNA lab-on-a-chip microfluidic system wins Dolomite’s Productizing Science® competition 2013 June 10th, 2014

Chip Technology

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Discoveries

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE