Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > DNA 'Tricked' to Act as Nano-Building Blocks; McGill Researchers Find New Ways to Manufacture Nanotubes of Controlled Geometry, Stiffness and Porositi

Abstract:
McGill researchers have succeeded in finding a new way to manufacture nanotubes, one of the important building blocks of the nanotechnology of the future.

Their building material? Biological DNA.

DNA 'Tricked' to Act as Nano-Building Blocks; McGill Researchers Find New Ways to Manufacture Nanotubes of Controlled Geometry, Stiffness and Porositi

Montreal, Canada | Posted on April 12th, 2009

A team of researchers, led by Prof. Hanadi Sleiman in collaboration with Prof. Gonzalo Cosa, both of McGill University's Department of Chemistry, can now tailor different geometries, rigidities and porosities into these nanotubes through the clever introduction of non-DNA molecules. This work is to be reported in the April 13 edition of the journal Nature Nanotechnology.

Nanotubes are infinitesimally small, measuring six or seven nanometers across. (A nanometre, one-billionth of a metre, is one ten-thousandth the diameter of a human hair.) One of the important features of these tubes is their extreme length, at about 20,000 nanometres. While they are tiny, they offer an incredibly versatile potential to solve a number of key problems facing nanotechnology researchers. This includes the design of drug delivery vehicles, the manufacture of electronic nanowires, medical implants and scaffolds for solar energy conversion among others.

"It looks like our fabrication is in place," Sleiman said. "We are now looking at potential applications of these materials in drug delivery. It's too early to tell for sure, but this is certainly something worth exploring.

"DNA is an incredible scaffold for making nanotubes."

Nanotechnology's tremendous potential to affect social and economic development is dependent on scientists first being able to make the necessary molecules and materials. To make this happen, nanotechnologists are now using nature's code of life, DNA. With its simple A, T, C and G alphabet, DNA is able to direct the formation of an astounding array of proteins that work collectively to create life. It is precisely this property of chemical information stored in DNA that nanotechnology is now exploiting.

In this case, DNA strands are programmed to assemble into complex one- two- and three-dimensional structures. By incorporating synthetic molecules into such strands of DNA, the Sleiman group provided nature's workhorse with further specific dialed-in structural and functional properties.

Using this method, Faisal Aldaye, Peggy Lo, Pierre Karam and Chris McLaughlin in the Sleiman and Cosa laboratories have demonstrated the first examples of DNA nanotubes with deliberately controlled geometry. Remarkable triangular and square-shaped tubes spontaneously form using these new techniques.

These nanotubes offer great potential, for example, for the construction of metal nanowires of different geometries. The DNA tube can be used as a mold into which metals are grown, creating microscopically thin wires that may have a wide variety of applications.

The team has also shown how these nanotubes can be created in an "open," single-stranded form and "closed" double-stranded form. These forms will be especially interesting for the encapsulation and selective release of drugs near the site of diseased cells.

The research was made possible thanks to support from NSERC, the Canadian Institute for Advanced Research, and the Center for Self-Assembled Chemical Structures.

####

For more information, please click here

Contacts:
Cynthia Lee
Media Relations Officer
McGill University

514-398-6754

Copyright © McGill University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Nanotubes/Buckyballs

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Discoveries

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Nanobiotechnology

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE