Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA 'Tricked' to Act as Nano-Building Blocks; McGill Researchers Find New Ways to Manufacture Nanotubes of Controlled Geometry, Stiffness and Porositi

Abstract:
McGill researchers have succeeded in finding a new way to manufacture nanotubes, one of the important building blocks of the nanotechnology of the future.

Their building material? Biological DNA.

DNA 'Tricked' to Act as Nano-Building Blocks; McGill Researchers Find New Ways to Manufacture Nanotubes of Controlled Geometry, Stiffness and Porositi

Montreal, Canada | Posted on April 12th, 2009

A team of researchers, led by Prof. Hanadi Sleiman in collaboration with Prof. Gonzalo Cosa, both of McGill University's Department of Chemistry, can now tailor different geometries, rigidities and porosities into these nanotubes through the clever introduction of non-DNA molecules. This work is to be reported in the April 13 edition of the journal Nature Nanotechnology.

Nanotubes are infinitesimally small, measuring six or seven nanometers across. (A nanometre, one-billionth of a metre, is one ten-thousandth the diameter of a human hair.) One of the important features of these tubes is their extreme length, at about 20,000 nanometres. While they are tiny, they offer an incredibly versatile potential to solve a number of key problems facing nanotechnology researchers. This includes the design of drug delivery vehicles, the manufacture of electronic nanowires, medical implants and scaffolds for solar energy conversion among others.

"It looks like our fabrication is in place," Sleiman said. "We are now looking at potential applications of these materials in drug delivery. It's too early to tell for sure, but this is certainly something worth exploring.

"DNA is an incredible scaffold for making nanotubes."

Nanotechnology's tremendous potential to affect social and economic development is dependent on scientists first being able to make the necessary molecules and materials. To make this happen, nanotechnologists are now using nature's code of life, DNA. With its simple A, T, C and G alphabet, DNA is able to direct the formation of an astounding array of proteins that work collectively to create life. It is precisely this property of chemical information stored in DNA that nanotechnology is now exploiting.

In this case, DNA strands are programmed to assemble into complex one- two- and three-dimensional structures. By incorporating synthetic molecules into such strands of DNA, the Sleiman group provided nature's workhorse with further specific dialed-in structural and functional properties.

Using this method, Faisal Aldaye, Peggy Lo, Pierre Karam and Chris McLaughlin in the Sleiman and Cosa laboratories have demonstrated the first examples of DNA nanotubes with deliberately controlled geometry. Remarkable triangular and square-shaped tubes spontaneously form using these new techniques.

These nanotubes offer great potential, for example, for the construction of metal nanowires of different geometries. The DNA tube can be used as a mold into which metals are grown, creating microscopically thin wires that may have a wide variety of applications.

The team has also shown how these nanotubes can be created in an "open," single-stranded form and "closed" double-stranded form. These forms will be especially interesting for the encapsulation and selective release of drugs near the site of diseased cells.

The research was made possible thanks to support from NSERC, the Canadian Institute for Advanced Research, and the Center for Self-Assembled Chemical Structures.

####

For more information, please click here

Contacts:
Cynthia Lee
Media Relations Officer
McGill University

514-398-6754

Copyright © McGill University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Discoveries

Creating new materials with quantum effects for electronics January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchersí crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Announcements

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Nanobiotechnology

Spider electro-combs its sticky nano-filaments January 28th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE