Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA 'Tricked' to Act as Nano-Building Blocks; McGill Researchers Find New Ways to Manufacture Nanotubes of Controlled Geometry, Stiffness and Porositi

Abstract:
McGill researchers have succeeded in finding a new way to manufacture nanotubes, one of the important building blocks of the nanotechnology of the future.

Their building material? Biological DNA.

DNA 'Tricked' to Act as Nano-Building Blocks; McGill Researchers Find New Ways to Manufacture Nanotubes of Controlled Geometry, Stiffness and Porositi

Montreal, Canada | Posted on April 12th, 2009

A team of researchers, led by Prof. Hanadi Sleiman in collaboration with Prof. Gonzalo Cosa, both of McGill University's Department of Chemistry, can now tailor different geometries, rigidities and porosities into these nanotubes through the clever introduction of non-DNA molecules. This work is to be reported in the April 13 edition of the journal Nature Nanotechnology.

Nanotubes are infinitesimally small, measuring six or seven nanometers across. (A nanometre, one-billionth of a metre, is one ten-thousandth the diameter of a human hair.) One of the important features of these tubes is their extreme length, at about 20,000 nanometres. While they are tiny, they offer an incredibly versatile potential to solve a number of key problems facing nanotechnology researchers. This includes the design of drug delivery vehicles, the manufacture of electronic nanowires, medical implants and scaffolds for solar energy conversion among others.

"It looks like our fabrication is in place," Sleiman said. "We are now looking at potential applications of these materials in drug delivery. It's too early to tell for sure, but this is certainly something worth exploring.

"DNA is an incredible scaffold for making nanotubes."

Nanotechnology's tremendous potential to affect social and economic development is dependent on scientists first being able to make the necessary molecules and materials. To make this happen, nanotechnologists are now using nature's code of life, DNA. With its simple A, T, C and G alphabet, DNA is able to direct the formation of an astounding array of proteins that work collectively to create life. It is precisely this property of chemical information stored in DNA that nanotechnology is now exploiting.

In this case, DNA strands are programmed to assemble into complex one- two- and three-dimensional structures. By incorporating synthetic molecules into such strands of DNA, the Sleiman group provided nature's workhorse with further specific dialed-in structural and functional properties.

Using this method, Faisal Aldaye, Peggy Lo, Pierre Karam and Chris McLaughlin in the Sleiman and Cosa laboratories have demonstrated the first examples of DNA nanotubes with deliberately controlled geometry. Remarkable triangular and square-shaped tubes spontaneously form using these new techniques.

These nanotubes offer great potential, for example, for the construction of metal nanowires of different geometries. The DNA tube can be used as a mold into which metals are grown, creating microscopically thin wires that may have a wide variety of applications.

The team has also shown how these nanotubes can be created in an "open," single-stranded form and "closed" double-stranded form. These forms will be especially interesting for the encapsulation and selective release of drugs near the site of diseased cells.

The research was made possible thanks to support from NSERC, the Canadian Institute for Advanced Research, and the Center for Self-Assembled Chemical Structures.

####

For more information, please click here

Contacts:
Cynthia Lee
Media Relations Officer
McGill University

514-398-6754

Copyright © McGill University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Discoveries

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Announcements

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanobiotechnology

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic