Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quantum Computers Will Require Complex Software to Manage Errors

While rudimentary is a fair description of this early computer—the National Bureau of Standards’ SEAC, built in 1950—prototype quantum computers have not even reached its level of sophistication. Theorists at NIST have demonstrated that quantum computer software will need to be more complex than some researchers had hoped, potentially slowing the devices’ development, but also allowing scientists to focus on more promising development pathways.

Credit: NIST Archives
While rudimentary is a fair description of this early computer—the National Bureau of Standards’ SEAC, built in 1950—prototype quantum computers have not even reached its level of sophistication. Theorists at NIST have demonstrated that quantum computer software will need to be more complex than some researchers had hoped, potentially slowing the devices’ development, but also allowing scientists to focus on more promising development pathways. Credit: NIST Archives

Abstract:
Highlighting another challenge to the development of quantum computers, theorists at the National Institute of Standards and Technology (NIST) have shown* that a type of software operation, proposed as a solution to fundamental problems with the computers' hardware, will not function as some designers had hoped.

Quantum Computers Will Require Complex Software to Manage Errors

Gaithersburg, MD | Posted on April 9th, 2009

Quantum computers—if they can ever be realized—will employ effects associated with atomic physics to solve otherwise intractable problems. But the NIST team has proved that the software in question, widely studied due to its simplicity and robustness to noise, is insufficient for performing arbitrary computations. This means that any software the computers use will have to employ far more complex and resource-intensive solutions to ensure the devices function effectively.

Unlike a conventional computer's binary on-off switches, the building blocks of quantum computers, known as quantum bits, or "qubits," have the mind-bending ability to exist in both "on" and "off" states simultaneously due to the so-called "superposition" principle of quantum physics. Once harnessed, the superposition principle should allow quantum computers to extract patterns from the possible outputs of a huge number of computations without actually performing all of them. This ability to extract overall patterns makes the devices potentially valuable for tasks such as codebreaking.

One issue, though, is that prototype quantum processors are prone to errors caused, for example, by noise from stray electric or magnetic fields. Conventional computers can guard against errors using techniques such as repetition, where the information in each bit is copied several times and the copies are checked against one another as the calculation proceeds. But this sort of redundancy is impossible in a quantum computer, where the laws of the quantum world forbid such information cloning.

To improve the efficiency of error correction, researchers are designing quantum computing architectures so as to limit the spread of errors. One of the simplest and most effective ways of ensuring this is by creating software that never permits qubits to interact if their errors might compound one another. Quantum software operations with this property are called "transversal encoded quantum gates." NIST information theorist Bryan Eastin describes these gates as a solution both simple to employ and resistant to the noise of error-prone quantum processors. But the NIST team has proved mathematically that transversal gates cannot be used exclusively, meaning that more complex solutions for error management and correction must be employed.

Eastin says their result does not represent a setback to quantum computer development because researchers, unable to figure out how to employ transversal gates universally, have already developed other techniques for dealing with errors. "The findings could actually help move designers on to greener pastures," he says. "There are some avenues of exploration that are less tempting now."

* B. Eastin and E. Knill. Restrictions on transversal quantum gate sets. Physical Review Letters, 102, 110502, March 20, 2009.

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media contact: Chad Boutin, (301) 975-4261

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Physics

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Nano-pea pod model widens electronics applications: A new theoretical model explains how a nanostructure, such as the nano-pea pod, can exhibit localised electrons September 4th, 2014

Quantum Computing

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE