Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Bionanotechnology: revolution at single molecule level

Abstract:
Progress in bionanotechnology is essential for our understanding of cells and for the development of new therapeutics, which nowadays increasingly function at the molecular level. This was one of the statements made by Prof. Nynke Dekker on Wednesday 8 April during her inaugural address at TU Delft, the Netherlands.

Bionanotechnology: revolution at single molecule level

Delft, The Netherlands | Posted on April 9th, 2009

The biological world contains a great many components and is, therefore, not straightforward to understand. However, research is accelerating as a result of the confluence of various disciplines. Collaboration between biologists, physicists and engineers has been particularly productive recently. These days, physical technologies enable us not only to perceive a single biological molecule (such as DNA) in a cell, but also to film, as it were, the interaction of this molecule with proteins.

As Prof. Nynke Dekker puts it: "With the development of biology in the direction of the molecular scale, cell biology is taking on an increasingly ‘engineering' character: the biologist's approach is rapidly changing into that of the engineer."

Bionanotechnology

Bionanotechnologist Dekker explains: "Physicists and engineers are highly skilled in making, controlling and measuring small objects. You only have to look at the developments in quantum physics at the nanoscale, in which TU Delft has played a leading role."

Bionanotechnology is located on the interface between biology and nanotechnology and is, scientifically speaking, still largely unexplored. It is expected to become one of the key scientific areas of the 21st century. With the tools provided by nanotechnology, biological molecules can be accurately imaged, studied and controlled. This will lead to new insights in the functioning of the living cell.

World leader

Prof. Nynke Dekker (1971) is one of the prominent researchers in this field. She studied physics at Yale, USA, and obtained her doctorate at Harvard University, USA. She is also a member of the Young Academy of the Royal Netherlands Academy of Arts and Sciences (KNAW) and received the prestigious European Young Investigators (EURYI) Award in 2007. According to the European Science Foundation, ESF, this puts Prof. Dekker in the top twenty excellent young researchers who are seen as potential world leaders in their fields.

Pulling and turning

She received the EURYI Award for her research into molecular motors and their interaction with individual DNA molecules. "Such experiments, in which you can control the state of DNA by pulling and turning it, have generated a lot of interest. If you can manipulate DNA to this extent, and watch it in real time, the next step is easy: why not add a protein that changes something about the DNA and see whether this is discernible?"

Medicines

"A good deal of research focuses on using such single-molecule techniques, which the field has developed to such an extent that molecular motor movement along the elementary building blocks of DNA can be viewed. We hope to improve our understanding of the action of proteins at the molecular level in this way. This is essential for our understanding of the cell and for the future development of new therapeutics, which nowadays have an increasingly specific targets at the molecular level." TU Delft recognises the enormous significance of the bionanosciences and, for this reason, is setting up a new department for this field. In the next decade, the university will be investing 10 million euros in this new department, which will form a part of the university's successful Kavli Institute of Nanoscience.

####

About TUDelft
TU Delft cooperates with many other educational and research institutions, both in the Netherlands and abroad. The high quality of our research and teaching is renowned. TU Delft has numerous contacts with governments, trade associations, consultancies, industry and small and medium-sized companies.

For more information, please click here

Contacts:
Prof. Nynke Dekker, faculty of Applied Sciences, tel. +31 (0)15 278 3219,

Frank Nuijens, Science information officer, tel. +31 (0)15 278 4259,

Information TU Delft
T: 0031 (0)15 278 9111


Press information
Karen Collet
T: 0031 (0)15 278 5408


Michel van Baal
T: 015 2785454

Copyright © TUDelft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Profiles

Russia’s Nano-enabled Products Market to Witness Massive Growth February 8th, 2011

Adept Technology Announces Orders for Over $600K from Chinese Partner January 18th, 2011

Nanostart-held ItN Nanovation Receives Major Follow-on Order in Saudi Arabia November 29th, 2010

Homegrown Companies Developing Batteries for Clean Energy Storage November 2nd, 2010

Nanobiotechnology

Sensitive sensor detects Down syndrome DNA February 14th, 2019

Nominations invited for $250,000 Kabiller Prize — the world’s largest monetary award for achievement in nanomedicine: An additional $10,000 award will honor a young investigator in nanoscience, nanomedicine February 7th, 2019

Kanazawa University research: Chirality inversion in a helical molecule at controlled speeds February 6th, 2019

Disruptive by Design: Nano Now February 1st, 2019

Quantum nanoscience

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Sound and light trapped by disorder February 8th, 2019

Scientists image conducting edges in a promising 2-D material February 8th, 2019

TOCHA will take a topological approach to the next generation of electronic, photonic and phononic devices January 31st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project