Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > X Marks the Spot: Ions Coldly Go Through NIST Trap Junction

The NIST X-trap is constructed from a sandwich of two diamond-shaped alumina wafers, visible in the right center of the top photo. The bottom photo shows a close-up of the wafers. Ions are created in the lower left portion of the dark grey channel, which is a trench cut through both wafers. By controlling voltages on the 46 electrodes, the ions can be shuttled along the channels and through the junction—between the two gold-coated bridges that form the X—while remaining much cooler than in previous experiments.

Credit: R.B. Blakestad/NIST
The NIST X-trap is constructed from a sandwich of two diamond-shaped alumina wafers, visible in the right center of the top photo. The bottom photo shows a close-up of the wafers. Ions are created in the lower left portion of the dark grey channel, which is a trench cut through both wafers. By controlling voltages on the 46 electrodes, the ions can be shuttled along the channels and through the junction—between the two gold-coated bridges that form the X—while remaining much cooler than in previous experiments. Credit: R.B. Blakestad/NIST

Abstract:
Physicists at the National Institute of Standards and Technology (NIST) have demonstrated a new ion trap that enables ions to go through an intersection while keeping their cool.

X Marks the Spot: Ions Coldly Go Through NIST Trap Junction

Gaithersburg, MD | Posted on April 8th, 2009

Ten million times cooler than in prior similar trips, in fact. The demonstration, described in a forthcoming paper in Physical Review Letters,* is a step toward scaling up trap technology to build a large-scale quantum computer using ions (electrically charged atoms), a potentially powerful machine that could perform certain calculations—such as breaking today's best data encryption codes—much faster than today's computers.

NIST's new trap with a junction solves a key engineering issue for future possible ion-trap quantum computers: how to move ions in a particular quantum mechanical state back and forth between different locations for data storage or logic operations, without heating them up so much that they lose their fragile quantum properties, which are critical to information processing.

The new ion trap, a rectangle roughly 5 by 2 millimeters in outer dimensions, was constructed from laser-machined alumina, with a gold coating to form electrodes. It is more complex than previous NIST ion traps, with 46 electrodes supporting 18 ion trapping zones. Its unique feature is an X-shaped bridge connecting electrodes across a junction between zones. Junctions are required to allow ions to be grouped together efficiently for logic operations. As voltages are applied to different electrodes to move the ions, the electric fields restrain an ion as it moves between trapping zones. The fields created by the X-bridge are required for smooth transport through the junction and to keep ions from popping out at the junction.

NIST scientists transported single beryllium ions through the X-junction more than 1 million times while maintaining the properties critical to information processing with greater than 99.99 percent success. Pairs of ions were transported over 100,000 times. Ion transport through a junction has been reported once before, but the ions in the NIST trap received over 10 million times less heat than the earlier effort. The low heating, achieved through careful control and reductions in electrical noise, minimizes a major source of computation errors and processing slowdowns.

Over the past 15 years, NIST has demonstrated the basic building blocks for a computer based on ion traps, a promising design for a quantum computer. Now, the latest demonstration shows how information might be moved through a quantum processor rapidly and reliably enough for computing. It takes about 20 microseconds to move an ion across the junction and about 50 to 100 microseconds for transport between zones—times compatible with logic operations using ions. The trap design makes large-scale information processing possible while keeping the number of ions in each trap zone relatively small, such that individual ions can be manipulated without unwanted effects.

The work was funded in part by the Intelligence Advanced Research Projects Agency and Office of Naval Research.

* R.B. Blakestad, C. Ospelkaus, A.P. VanDevender, J.M. Amini, J. Britton, D. Leibfried, and D.J. Wineland. High fidelity transport of trapped-ion qubits through an X-junction trap array. Physical Review Letters. Forthcoming.

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

Contacts:
Media Contact: Laura Ost, (303) 497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Quantum Computing

1980s aircraft helps quantum technology take flight October 20th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Quantum nanoscience

NIST quantum probe enhances electric field measurements October 8th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE