Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > National Cancer Institute (NCI) Contracts with Aphios to Develop Nannotech Combination Therapy for Certain Cancers

Abstract:
Aphios Corporation today announced that it has entered into a contract with the National Cancer Institute (NCI) to develop Tdp-1 inhibitors either as a primary therapy or in combination with camptothecins for colon, breast, ovarian, leukemia and other cancers. The contract was made through the Small Business Innovative Research (SBIR) Phase I program.

National Cancer Institute (NCI) Contracts with Aphios to Develop Nannotech Combination Therapy for Certain Cancers

Woburn, Massachusetts | Posted on April 8th, 2009

The contract is to develop a combination therapeutic based on research conducted by scientists at the National Cancer Institute who have discovered that the enzyme Tyrosyl-DNA phosphodiesterase (Tdp1) can repair topoisomerase I (Top1)-DNA covalent complexes by hydrolyzing the tyrosyl-DNA bond [US Patent Pending]. Inhibiting Tdp1 has the potential to enhance the anticancer activity of topoisomerase I inhibitors such as camptothecins and to act as anti-proliferative agents.

Dr. Yves Pommier, lead scientist of this invention at the NCI states that "The development of Tdp1 inhibitors as anticancer agents can be envisioned as combinations of Tdp1 and Top1 inhibitors. Moreover, Tdp1 inhibitors might also be effective by themselves as anticancer agents."

Scientists at Aphios are developing a co-encapsulation formulation of the selected camptothecin and Tdp1 inhibitor in phospholipid nanosomes (small, uniform liposomes). Camptothecins are quite hydrophobic and will be packaged in the lipid bilayer. Tdp1 inhibitors such as tetracycline and neomycin are quite water-soluble and will be packaged in the aqueous core of phospholipid nanosomes [US Patents and US Patent Pending].
We anticipate that this nanosomal formulation will result in reduced systemic toxicity, due to the masking of the cytotoxic effects of camptothecins and Tdp1 inhibitors. Additionally, the stability of the lactone ring in the nanosomes will be improved as a result of protection from the neutral pH of the blood stream. By increasing residence time in the circulatory system, the nanosomes increase therapeutic efficacy of the combination drugs. Optionally, pegylated phospholipids will be utilized to provide steric hindrance that will further increase residence time and therapeutic efficacy as is done with DoxilŽ, liposome encapsulated doxorubicin. Furthermore, phospholipids linked with specific antibodies or ligands will be utilized to target the co-encapsulated camptothecin and Tdp1 inhibitor to specific cancers in the colon, lung or ovary. Such smart targeting will further reduce toxicities associated with both Top1 and Tdp1 inhibitors while increasing efficacy and therapeutic index.

The project described herein is supported by NCI Contract No. HHSN-261200800026C (NCI Control No. N43CM-2008-00026). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NCI and the National Institutes of Health.

####

About Aphios Corporation
Aphios Corporation is a biotechnology company that is developing enabling technology platforms including nanotechnology drug delivery platforms such as phospholipid nanosomes, biodegradable polymer nanospheres, and protein and crystal nanoparticles for the improved delivery of poorly water-soluble anticancer drugs, therapeutic proteins and siRNA molecules, as well as enhanced therapeutic products for health maintenance, disease prevention and the treatment of certain cancers, infectious diseases and CNS disorders.

For more information, please click here

Contacts:
Dr. Trevor P. Castor
President and CEO
Aphios Corporation
3-E Gill Street, New Boston Park
Woburn, Massachusetts 01801 USA
Tel: (001) (781) 932-6933
Fax: (001) (781) 932-6865

Copyright © Aphios Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Nanomedicine

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Announcements

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Nanobiotechnology

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Neutrophil nanosponges soak up proteins that promote rheumatoid arthritis September 3rd, 2018

Arrowhead Pharmaceuticals to Present at Upcoming September 2018 Conferences August 31st, 2018

A human enzyme can biodegrade graphene August 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project