Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Magnetic Vortex Switch Leads to Electric Pulse

Abstract:
Researchers at the University of Arkansas have shown that changing the chirality, or direction of spin, of a nanoscale magnetic vortex creates an electric pulse, suggesting that such a pulse might be of use in creating computer memory and writing information.

Magnetic Vortex Switch Leads to Electric Pulse

Fayetteville, AR | Posted on April 8th, 2009

Physicists Sergey Prosandeev and Laurent Bellaiche reported their findings in Physical Review Letters.

"This is new physics," Prosandeev said. "There are many possibilities that can follow from this."

The researchers looked at ferromagnets, a class of materials with novel properties at the nanoscale that have the potential to create new, efficient devices. They focused on the recently discovered vortex structure found at the nanoscale, investigating if a possible electric field can be generated when the vortex changes chirality.

"We change the magnetic structure but measure the associated electric field," Prosandeev said.

They found that switching the direction of the vortex from clockwise to counterclockwise produced a positive electric pulse - and that switching the vortex in the opposite direction created an electric pulse with a negative sign. The resulting electric pulse can thus serve as the fingerprint indicating that switches of vortices did occur, as such a switch is difficult to directly observe.

Switching of some physical properties such as polarization or magnetization currently is used in computer memory and writing and storing information, but because of the larger scale, it requires more energy and materials. Being able to create switches of vortices with less material and energy could create more efficient devices.

The researchers have derived a formula showing the relationship between the magnetic vortex and the electric pulse and have shown how it occurs graphically over time. The next step will be experiments to see this phenomenon in action.

"Theoreticians show what can be the next step," Prosandeev said. "These relationships can then be applied to technology."

####

About University of Arkansas
The University of Arkansas, often shortened to U of A or just UA, is a public co-educational land-grant university. It is the flagship campus of the University of Arkansas System and is located in Fayetteville, Arkansas. Founded as Arkansas Industrial University in 1871, its present name was adopted in 1899 and classes were first held in February 1872. It is noted for its strong architecture, agriculture (particularly poultry science),[4] creative writing and business programs.[5] It is also noted for the fact that University of Arkansas engineering students won the 2006 world championship for solar-powered boats.

Source: Wikipedia, the free encyclopedia

For more information, please click here

Contacts:
Sergey Prosandeev, research professor, physics
J. William Fulbright College of Arts and Sciences
479-575-6668,

Laurent Bellaiche, Twenty-First Century Endowed Professorship in Nanotechnology and Science Education, and professor of physics
J. William Fulbright College of Arts and Sciences
479-575-6425,

Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555,

Copyright © University of Arkansas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Physics

Graphene under pressure August 26th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Possible Futures

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Spintronics

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time July 20th, 2016

A new spin on reality July 15th, 2016

Memory Technology

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic