Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Magnetic Vortex Switch Leads to Electric Pulse

Abstract:
Researchers at the University of Arkansas have shown that changing the chirality, or direction of spin, of a nanoscale magnetic vortex creates an electric pulse, suggesting that such a pulse might be of use in creating computer memory and writing information.

Magnetic Vortex Switch Leads to Electric Pulse

Fayetteville, AR | Posted on April 8th, 2009

Physicists Sergey Prosandeev and Laurent Bellaiche reported their findings in Physical Review Letters.

"This is new physics," Prosandeev said. "There are many possibilities that can follow from this."

The researchers looked at ferromagnets, a class of materials with novel properties at the nanoscale that have the potential to create new, efficient devices. They focused on the recently discovered vortex structure found at the nanoscale, investigating if a possible electric field can be generated when the vortex changes chirality.

"We change the magnetic structure but measure the associated electric field," Prosandeev said.

They found that switching the direction of the vortex from clockwise to counterclockwise produced a positive electric pulse - and that switching the vortex in the opposite direction created an electric pulse with a negative sign. The resulting electric pulse can thus serve as the fingerprint indicating that switches of vortices did occur, as such a switch is difficult to directly observe.

Switching of some physical properties such as polarization or magnetization currently is used in computer memory and writing and storing information, but because of the larger scale, it requires more energy and materials. Being able to create switches of vortices with less material and energy could create more efficient devices.

The researchers have derived a formula showing the relationship between the magnetic vortex and the electric pulse and have shown how it occurs graphically over time. The next step will be experiments to see this phenomenon in action.

"Theoreticians show what can be the next step," Prosandeev said. "These relationships can then be applied to technology."

####

About University of Arkansas
The University of Arkansas, often shortened to U of A or just UA, is a public co-educational land-grant university. It is the flagship campus of the University of Arkansas System and is located in Fayetteville, Arkansas. Founded as Arkansas Industrial University in 1871, its present name was adopted in 1899 and classes were first held in February 1872. It is noted for its strong architecture, agriculture (particularly poultry science),[4] creative writing and business programs.[5] It is also noted for the fact that University of Arkansas engineering students won the 2006 world championship for solar-powered boats.

Source: Wikipedia, the free encyclopedia

For more information, please click here

Contacts:
Sergey Prosandeev, research professor, physics
J. William Fulbright College of Arts and Sciences
479-575-6668,

Laurent Bellaiche, Twenty-First Century Endowed Professorship in Nanotechnology and Science Education, and professor of physics
J. William Fulbright College of Arts and Sciences
479-575-6425,

Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555,

Copyright © University of Arkansas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

News and information

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Possible Futures

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Spintronics

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Making spintronic neurons sing in unison November 18th, 2016

Memory Technology

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

Characterization of magnetic nanovortices simplified December 21st, 2016

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

Announcements

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project