Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny Particles Solve Big Problems

Abstract:
Cutting edge nanotechnology research at North Carolina State University is leading to advances in everything from revitalizing HIV drugs to creating harder, stronger nanocrystalline iron that can really take the heat.

Tiny Particles Solve Big Problems

Raleigh, NC | Posted on April 6th, 2009

Chemists at North Carolina State University have discovered that adding tiny bits of gold to a failed HIV drug rekindle the drug's ability to stop the virus from invading the body's immune system, while NC State materials engineers have created a substance far stronger and harder than conventional iron, and which retains these properties under extremely high temperatures - opening the door to a wide variety of potential applications, such as engine components that are exposed to high stress and high temperatures.

Gold Gives Old Drug New Life

The addition of gold nanoparticles to a modified version of a drug designed in the 1990s to combat HIV - but discarded due to its harmful side effects - creates a compound that prevents the virus from gaining a cellular foothold, say Dr. Christian Melander, assistant professor of chemistry at NC State, and doctoral student T. Eric Ballard.

Their findings appear online in the Journal of the American Chemical Society.

The drug, a compound known as TAK-779, was originally found to bind to a specific location on human T-cells, which blocks the HIV virus' entry to the body's immune system. Unfortunately, the portion of the drug's molecule that made binding possible had unpleasant side effects. When that portion of the molecule - an ammonium salt - was removed, the drug lost its binding ability.

That's when Melander and colleagues from the University of North Carolina at Chapel Hill and the University of Colorado at Boulder turned to gold as the answer. The element is non-reactive in the human body, and would be the perfect "scaffold" to attach molecules of the drug to in the absence of the ammonium salt, holding the drug molecules together and concentrating their effect.

"The idea is that by attaching these individual molecules of the drug with a weak binding ability to the gold nanoparticle, you can magnify their ability to bind," Melander says.

The researchers' theory proved correct. They started with a modified version of TAK-779, which didn't include the harmful ammonium salt. After testing, they found that attaching 12 molecules of the modified drug (SDC-1721) to one nanoparticle of gold restored the drug's ability to prevent HIV infection in primary cultured patient cells. When only one molecule of the drug was attached to the gold nanoparticle, the compound was unable to prevent HIV infection, indicating that the multivalency of the drug was important for its activity.

"We've discovered a non-harmful way to improve the strength and efficacy of an important drug," Melander says. "There's no reason to think that this same process can't be used with similar effect on other existing drugs."

Tiny Crystals Make a Stronger, More Durable Iron

Iron that is made up of nanoscale crystals is far stronger and harder than its traditional counterpart, but the benefits of this "nano-iron" have been limited by the fact that its nanocrystalline structure breaks down at relatively modest temperatures. But the NC State researchers have developed an iron-zirconium alloy that retains its nanocrystalline structures at temperatures above 1,300 degrees Celsius - approaching the melting point of iron.

Kris Darling, a Ph.D. student at NC State who led the project to develop the material, explains that the alloy's ability to retain its nanocrystalline structure under high temperatures will allow for the material to be developed in bulk, because conventional methods of materials manufacture rely on heat and pressure.

In addition, Darling says the ability to work with the material at high temperatures will make it easier to form the alloy into useful shapes - for use as tools or in structural applications, such as engine parts.

The new alloy is also economically viable, since "it costs virtually the same amount to produce the alloy" as it does to create nano-iron, Darling says.

Dr. Carl C. Koch, an NC State professor of materials science engineering who worked on the project, explains that the alloy essentially consists of 1 percent zirconium and 99 percent iron. The zirconium allows the alloy to retain its nanocrystalline structure under high temperatures.

The research will appear in the journal Scripta Materialia. Kris Darling is the lead author on the paper, "Grain-size Stabilization in Nanocrystalline FeZr Alloys," but co-authors include Koch, fellow NC State materials science professor Dr. Ronald O. Scattergood, NC State doctoral student Jonathan E. Semones, and NC State undergraduates Ryan N. Chan and Patrick Z. Wong.

####

About North Carolina State University
With more than 31,000 students and nearly 8,000 faculty and staff, North Carolina State University is a comprehensive university known for its leadership in education and research, and globally recognized for its science, technology, engineering and mathematics leadership.

NC State students, faculty and staff are focused. As one of the leading land-grant institutions in the nation, NC State is committed to playing an active and vital role in improving the quality of life for the citizens of North Carolina, the nation and the world.

For more information, please click here

Contacts:

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Announcements

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Automotive/Transportation

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Nanofluids Improve Performance of Automobile Radiator July 1st, 2014

Iranian Researchers Produce Protein Nanoparticles from Chicken Feather June 11th, 2014

Nanobiotechnology

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE