Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Tiny Particles Solve Big Problems

Abstract:
Cutting edge nanotechnology research at North Carolina State University is leading to advances in everything from revitalizing HIV drugs to creating harder, stronger nanocrystalline iron that can really take the heat.

Tiny Particles Solve Big Problems

Raleigh, NC | Posted on April 6th, 2009

Chemists at North Carolina State University have discovered that adding tiny bits of gold to a failed HIV drug rekindle the drug's ability to stop the virus from invading the body's immune system, while NC State materials engineers have created a substance far stronger and harder than conventional iron, and which retains these properties under extremely high temperatures - opening the door to a wide variety of potential applications, such as engine components that are exposed to high stress and high temperatures.

Gold Gives Old Drug New Life

The addition of gold nanoparticles to a modified version of a drug designed in the 1990s to combat HIV - but discarded due to its harmful side effects - creates a compound that prevents the virus from gaining a cellular foothold, say Dr. Christian Melander, assistant professor of chemistry at NC State, and doctoral student T. Eric Ballard.

Their findings appear online in the Journal of the American Chemical Society.

The drug, a compound known as TAK-779, was originally found to bind to a specific location on human T-cells, which blocks the HIV virus' entry to the body's immune system. Unfortunately, the portion of the drug's molecule that made binding possible had unpleasant side effects. When that portion of the molecule - an ammonium salt - was removed, the drug lost its binding ability.

That's when Melander and colleagues from the University of North Carolina at Chapel Hill and the University of Colorado at Boulder turned to gold as the answer. The element is non-reactive in the human body, and would be the perfect "scaffold" to attach molecules of the drug to in the absence of the ammonium salt, holding the drug molecules together and concentrating their effect.

"The idea is that by attaching these individual molecules of the drug with a weak binding ability to the gold nanoparticle, you can magnify their ability to bind," Melander says.

The researchers' theory proved correct. They started with a modified version of TAK-779, which didn't include the harmful ammonium salt. After testing, they found that attaching 12 molecules of the modified drug (SDC-1721) to one nanoparticle of gold restored the drug's ability to prevent HIV infection in primary cultured patient cells. When only one molecule of the drug was attached to the gold nanoparticle, the compound was unable to prevent HIV infection, indicating that the multivalency of the drug was important for its activity.

"We've discovered a non-harmful way to improve the strength and efficacy of an important drug," Melander says. "There's no reason to think that this same process can't be used with similar effect on other existing drugs."

Tiny Crystals Make a Stronger, More Durable Iron

Iron that is made up of nanoscale crystals is far stronger and harder than its traditional counterpart, but the benefits of this "nano-iron" have been limited by the fact that its nanocrystalline structure breaks down at relatively modest temperatures. But the NC State researchers have developed an iron-zirconium alloy that retains its nanocrystalline structures at temperatures above 1,300 degrees Celsius - approaching the melting point of iron.

Kris Darling, a Ph.D. student at NC State who led the project to develop the material, explains that the alloy's ability to retain its nanocrystalline structure under high temperatures will allow for the material to be developed in bulk, because conventional methods of materials manufacture rely on heat and pressure.

In addition, Darling says the ability to work with the material at high temperatures will make it easier to form the alloy into useful shapes - for use as tools or in structural applications, such as engine parts.

The new alloy is also economically viable, since "it costs virtually the same amount to produce the alloy" as it does to create nano-iron, Darling says.

Dr. Carl C. Koch, an NC State professor of materials science engineering who worked on the project, explains that the alloy essentially consists of 1 percent zirconium and 99 percent iron. The zirconium allows the alloy to retain its nanocrystalline structure under high temperatures.

The research will appear in the journal Scripta Materialia. Kris Darling is the lead author on the paper, "Grain-size Stabilization in Nanocrystalline FeZr Alloys," but co-authors include Koch, fellow NC State materials science professor Dr. Ronald O. Scattergood, NC State doctoral student Jonathan E. Semones, and NC State undergraduates Ryan N. Chan and Patrick Z. Wong.

####

About North Carolina State University
With more than 31,000 students and nearly 8,000 faculty and staff, North Carolina State University is a comprehensive university known for its leadership in education and research, and globally recognized for its science, technology, engineering and mathematics leadership.

NC State students, faculty and staff are focused. As one of the leading land-grant institutions in the nation, NC State is committed to playing an active and vital role in improving the quality of life for the citizens of North Carolina, the nation and the world.

For more information, please click here

Contacts:

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Nanomedicine

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Automotive/Transportation

June 29th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen June 15th, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project