Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bird Feathers Produce Color Through Structure Similar to Beer Foam

Prum and Dufresne discovered that the nanostructures that produce some birds’ brightly colored plumage, such as the blue feathers of the male Eastern Bluebird, have a sponge-like structure. (Photo: Ken Thomas)
Prum and Dufresne discovered that the nanostructures that produce some birds’ brightly colored plumage, such as the blue feathers of the male Eastern Bluebird, have a sponge-like structure. (Photo: Ken Thomas)

Abstract:
Some of the brightest colors in nature are created by tiny nanostructures with a structure similar to beer foam or a sponge, according to Yale University researchers.

Bird Feathers Produce Color Through Structure Similar to Beer Foam

New Haven, CT | Posted on April 4th, 2009

Most colors in nature—from the color of our skin to the green of trees—are produced by pigments. But the bright blue feathers found in many birds, such as Bluebirds and Blue Jays, are instead produced by nanostructures. Under an electron microscope, these structures look like sponges with air bubbles.

Now an interdisciplinary team of Yale engineers, physicists and evolutionary biologists has taken a step toward uncovering how these structures form. They compared the nanostructures to examples of materials undergoing phase separation, in which mixtures of different substances become unstable and separate from one another, such as the carbon-dioxide bubbles that form when the top is popped off a bubbly drink. They found that the color-producing structures in feathers appear to self-assemble in much the same manner. Bubbles of water form in a protein-rich soup inside the living cell and are replaced with air as the feather grows.

The research, which appears online in the journal Soft Matter, provides new insight into how organisms use self-assembly to produce color, and has important implications for the role color plays in birds' plumage, as the color produced depends entirely on the precise size and shape of these nanostructures.

"Many biologists think that plumage color can encode information about quality - basically, that a bluer male is a better mate," said Richard Prum, chair of the Department of Ecology and Evolutionary Biology and one of the paper's authors. "Such information would have to be encoded in the feather as the bubbles grow. I think our hypothesis that phase separation is involved provides less opportunity for encoding information about quality than most biologists thought. At the same time, it's exciting to think about other ways birds might be using phase separation."

Eric Dufresne, lead author of the paper, is also interested in the potential technological applications of the finding. "We have found that nature elegantly self assembles intricate optical structures in bird feathers. We are now mimicking this approach to make a new generation of optical materials in the lab," said Dufresne, assistant professor of mechanical engineering, chemical engineering and physics.

Prum believes it was the interdisciplinary approach the team took that led to their success - a result he plans on celebrating "with another practical application of phase separation: champagne!"

Other authors of the paper include Heeso Noh, Vinodkumar Saranathan, Simon Mochrie Hui Cao (all of Yale University).

####

About Yale
Yale University comprises three major academic components: Yale College (the undergraduate program), the Graduate School of Arts and Sciences, and the professional schools. In addition, Yale encompasses a wide array of centers and programs, libraries, museums, and administrative support offices. Approximately 11,250 students attend Yale.

For more information, please click here

Contacts:
Suzanne Taylor Muzzin
203-432-8555

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Possible Futures

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Self Assembly

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

DNA shaping up to be ideal framework for rationally designed nanostructures: Shaped DNA frames that precisely link nanoparticles into different structures offer a platform for designing functional nanomaterials June 14th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Photonics/Optics/Lasers

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

A new trick for controlling emission direction in microlasers June 20th, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

New approach to microlasers: Technique for 'phase locking' arrays of tiny lasers could lead to terahertz security scanners June 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic