Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Discovery of Current Spike Phenomenon in Semiconductor Materials

Abstract:
Discovery of Current Spike Phenomenon in Semiconductor Materials
Leads to New Understanding of Nanoscale Plasticity
Plasticity in certain semiconductor materials at the nanoscale is actually linked to phase transformation rather than dislocation nucleation, as previously thought. This is shown by the results of an international research team led by Professor Roman Nowak of the Nordic Hysitron Laboratory (NHL) at Helsinki University of Technology, just published in the Nature Nanotechnology journal in an article entitled "An electric current spike linked to nanoscale plasticity". The research is part of the Academy of Finland's FinNano research programme.

Discovery of Current Spike Phenomenon in Semiconductor Materials

Helsinki, Finland | Posted on April 1st, 2009

Plasticity has always been associated with defect movement or initiation, but Nowak's team has proved that plasticity can indeed start from non-dislocation processes, and that this phase transformation occurs in a stressed nano-volume, changing from one crystalline structure to another without affecting defect activity. The phenomenon, named the "Current Spike", is clearly visible, and its explanation relies heavily on advanced physics.

"The implications of these findings are such that our understanding of material behavior in the nano-regime may just need to be revised once again. If this approach is further developed to encompass other sets of materials than the ones studied here, this new evidence will certainly lead to many advances in pressure-sensing and pressure-switching applications, just to name one of many potential benefactors of these newly-revealed discoveries," Nowak says.

While certainly enlightening on their own, the NHL's recently-published findings represent the first critical steps towards addressing an intriguing larger issue: Under which conditions and at which length scales does combined mechanical-electrical coupling lead to similar effects? NHL will be leading the way and acting as a source of inspiration in this quest for understanding of the deformation of materials at nanoscale.

The main target of NHL is the mechanical characterization of advanced materials and nanostructures using the nanoindentation testing technique. An instrument developed by Hysitron, Inc. of Minneapolis, USA allows for a quantitative and concurrent measurement of the mechanical and electrical properties. These experiments are complemented by computational methods, with the aim of exploring nanometer-size contacts in the material and arrive at the final unique clarification.

The NHL's success stems from well-targeted and carefully-organised collaboration with the best experts in the field. Both the NHL's efficiency and effectiveness are demonstrated by the recent publication, which was only made possible by virtue of the synergistic combination of the expertise in atomistic calculations of Professor Nowak and two visiting researchers, together with sophisticated nano-experimentation by Hysitron, Inc, USA, and a top proficiency in the production of advanced semiconductors at the Tampere University of Technology.

More information: Professor Roman Nowak, Nordic Hysitron Laboratory, Department of Materials Science and Engineering, Helsinki University of Technology, email tel. (09) 451 2667

"An electric current spike linked to nanoscale plasticity", R. Nowak, D. Chrobak, and S.Nagao, NHL, D. Vodnick and M. Berg, Hysitron Inc., A. Tukiainen and M. Pessa, Tampere University of Technology.

Nature Nanotechnology. on-line version: 22 March 2009 | doi:10.1038/nnano.2009.49
www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2009.49.html

####

About Academy of Finland
The Academy of Finland’s mission is to advance scientific research and its application, support international scientific cooperation, act as an expert organ in science policy issues and allocate funding to research and other advancement of science.

For more information, please click here

Contacts:
Academy of Finland Communications
Communications Specialist Leena Vähäkylä
tel. (09) 7748 8327

Copyright © Academy of Finland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Possible Futures

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Chip Technology

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Sensors

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Discoveries

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Announcements

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project