Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Silicon superlattices: New waves in thermoelectricity

Max G. Lagally
Max G. Lagally

Abstract:
University of Wisconsin-Madison research team has developed a new method for using nanoscale silicon that could improve devices that convert thermal energy into electrical energy.

Silicon superlattices: New waves in thermoelectricity

Madison, WI | Posted on March 31st, 2009

The team, led by Erwin W. Mueller Professor and Bascom Professor of Surface Science Max Lagally, published its findings in the March 24 issue of the journal ACS Nano.

Thermoelectric devices can use electricity to cool, or conversely convert heat to electricity. To improve efficiency in tiny thermoelectric devices, researchers build superlattices of alternating thin layers of two different semiconductor materials, called heterojunctions. Charges in multi-layer heterojunction wires travel through a periodic electric field that influences their motion; however, it is difficult to create modulation large enough to be effective with traditional heterojunctions, Lagally says.

The UW-Madison team addressed the problem by creating a superlattice from a single material: a sheet of silicon nanometers thick, called a nanomembrane, and cutting it into ribbons nanometers wide. The researchers can induce localized strain in the silicon, creating an effective strain wave that causes charges the electric field in the ribbon to vary periodically.

"Essentially we're making the equivalent of a heterojunction superlattice with one material," says Lagally, whose home department is materials science and engineering. "We're actually doing better with these strained regions than you can do easily with multiple-chemical-component systems."

The strained-silicon superlattices display greater electric field modulation than their heterojunction counterparts, so they may improve silicon thermoelectrics near or above room temperature. In addition, they are relatively easy to manufacture. Lagally and his group theorize that their method could apply to any type of semiconductor nanomembrane.

"It's cool in several ways: It's a single material, the modulation in the electric field is bigger than what others can make easily, and it's very straightforward," says Lagally.

Co-authors of the paper include Lagally, UW-Madison postdoctoral associate Hing-Huang Huang, graduate students Clark Ritz and Bozidar Novakovic, assistant scientist Frank Flack, associate scientist Don Savage, Materials Science and Engineering Associate Professor Paul Evans, and Electrical and Computer Engineering Assistant Professor Irena Knezevic, along with Decai Yu, Yu Zhang and Professor Feng Liu of the University of Utah.

The U.S. Department of Energy, the National Science Foundation and the Air Force Office of Scientific Research supported this work.

####

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Possible Futures

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project