Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Silicon superlattices: New waves in thermoelectricity

Max G. Lagally
Max G. Lagally

Abstract:
University of Wisconsin-Madison research team has developed a new method for using nanoscale silicon that could improve devices that convert thermal energy into electrical energy.

Silicon superlattices: New waves in thermoelectricity

Madison, WI | Posted on March 31st, 2009

The team, led by Erwin W. Mueller Professor and Bascom Professor of Surface Science Max Lagally, published its findings in the March 24 issue of the journal ACS Nano.

Thermoelectric devices can use electricity to cool, or conversely convert heat to electricity. To improve efficiency in tiny thermoelectric devices, researchers build superlattices of alternating thin layers of two different semiconductor materials, called heterojunctions. Charges in multi-layer heterojunction wires travel through a periodic electric field that influences their motion; however, it is difficult to create modulation large enough to be effective with traditional heterojunctions, Lagally says.

The UW-Madison team addressed the problem by creating a superlattice from a single material: a sheet of silicon nanometers thick, called a nanomembrane, and cutting it into ribbons nanometers wide. The researchers can induce localized strain in the silicon, creating an effective strain wave that causes charges the electric field in the ribbon to vary periodically.

"Essentially we're making the equivalent of a heterojunction superlattice with one material," says Lagally, whose home department is materials science and engineering. "We're actually doing better with these strained regions than you can do easily with multiple-chemical-component systems."

The strained-silicon superlattices display greater electric field modulation than their heterojunction counterparts, so they may improve silicon thermoelectrics near or above room temperature. In addition, they are relatively easy to manufacture. Lagally and his group theorize that their method could apply to any type of semiconductor nanomembrane.

"It's cool in several ways: It's a single material, the modulation in the electric field is bigger than what others can make easily, and it's very straightforward," says Lagally.

Co-authors of the paper include Lagally, UW-Madison postdoctoral associate Hing-Huang Huang, graduate students Clark Ritz and Bozidar Novakovic, assistant scientist Frank Flack, associate scientist Don Savage, Materials Science and Engineering Associate Professor Paul Evans, and Electrical and Computer Engineering Assistant Professor Irena Knezevic, along with Decai Yu, Yu Zhang and Professor Feng Liu of the University of Utah.

The U.S. Department of Energy, the National Science Foundation and the Air Force Office of Scientific Research supported this work.

####

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission September 11, 2015 September 1st, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Announcements

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Waste coffee used as fuel storage: Scientists have developed a simple process to treat waste coffee grounds to allow them to store methane September 2nd, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Energy

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission September 11, 2015 September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic