Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Silicon superlattices: New waves in thermoelectricity

Max G. Lagally
Max G. Lagally

Abstract:
University of Wisconsin-Madison research team has developed a new method for using nanoscale silicon that could improve devices that convert thermal energy into electrical energy.

Silicon superlattices: New waves in thermoelectricity

Madison, WI | Posted on March 31st, 2009

The team, led by Erwin W. Mueller Professor and Bascom Professor of Surface Science Max Lagally, published its findings in the March 24 issue of the journal ACS Nano.

Thermoelectric devices can use electricity to cool, or conversely convert heat to electricity. To improve efficiency in tiny thermoelectric devices, researchers build superlattices of alternating thin layers of two different semiconductor materials, called heterojunctions. Charges in multi-layer heterojunction wires travel through a periodic electric field that influences their motion; however, it is difficult to create modulation large enough to be effective with traditional heterojunctions, Lagally says.

The UW-Madison team addressed the problem by creating a superlattice from a single material: a sheet of silicon nanometers thick, called a nanomembrane, and cutting it into ribbons nanometers wide. The researchers can induce localized strain in the silicon, creating an effective strain wave that causes charges the electric field in the ribbon to vary periodically.

"Essentially we're making the equivalent of a heterojunction superlattice with one material," says Lagally, whose home department is materials science and engineering. "We're actually doing better with these strained regions than you can do easily with multiple-chemical-component systems."

The strained-silicon superlattices display greater electric field modulation than their heterojunction counterparts, so they may improve silicon thermoelectrics near or above room temperature. In addition, they are relatively easy to manufacture. Lagally and his group theorize that their method could apply to any type of semiconductor nanomembrane.

"It's cool in several ways: It's a single material, the modulation in the electric field is bigger than what others can make easily, and it's very straightforward," says Lagally.

Co-authors of the paper include Lagally, UW-Madison postdoctoral associate Hing-Huang Huang, graduate students Clark Ritz and Bozidar Novakovic, assistant scientist Frank Flack, associate scientist Don Savage, Materials Science and Engineering Associate Professor Paul Evans, and Electrical and Computer Engineering Assistant Professor Irena Knezevic, along with Decai Yu, Yu Zhang and Professor Feng Liu of the University of Utah.

The U.S. Department of Energy, the National Science Foundation and the Air Force Office of Scientific Research supported this work.

####

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Announcements

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Energy

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE