Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanowires plus nanotubes equals supercapacitance

Anatomy of a supercapacitor: two films combining Indium Oxide (In2O2) separated by a layer of Nafion film.
Anatomy of a supercapacitor: two films combining Indium Oxide (In2O2) separated by a layer of Nafion film.

Abstract:
It is a completely transparent and flexible energy conversion and storage device that you can bend and twist like a poker card.

Nanowires plus nanotubes equals supercapacitance

Los Angeles, CA | Posted on March 31st, 2009

It continues a line of prototype devices created at the USC Viterbi School of Engineering that can perform the electronic operations now usually handled by silicon chips using carbon nanotubes and metal nanowires set in indium oxide films, and can potentially do so at prices competitive with those of existing technologies.

The device is a supercapacitor, a circuit component that can temporarily store large amounts of electrical energy for release when needed. A team headed by Chongwu Zhou describes it a newly-published paper on "Flexible and Transparent Supercapacitor based on Indium Nanowire / Carbon Nanotube Heterogeneous Films" in the journal Applied Physics Letters (Vol.94, Issue 4, Page 043113, 2009).

Its creators believe the device points the way to further applications, such as flexible power supply components in "e-paper" displays and conformable products.

The device stores an energy density of 1.29 Watt-hour/kilogram with a specific capacitance of 64 Farad/gram. By contrast, conventional capacitors usually have an energy density of less than 0.1 Wh/kg and a storage capacitance of several tenth millifarads.

Zhou, who holds the Jack Munushiun Early Career Chair at the USC Ming Hsieh Department of Electrical Engineering, worked with USC graduate students Po-Chiang Chen and Sawalok Sukcharoenchoke, and post-doc Guozhen Shen.

The group incorporated metal oxide nanowires with carbon nanotubes (CNTs) to form heterogeneous films and further optimized the film thickness attaching on transparent plastic substrates to maintain the mechanical flexibility and optical transparency of the supercapacitors.

According to Zhou, the work, based on combing CNTs with metal nanowiers represents an advance on earlier attempts to produce supercapacitors using just CNTs or graphite.

Such efforts resulted in only modest performance compared to those using transition metal oxide materials, including such oxides of iron, manganese and rubidium. Moreover, energy storage devices made by these materials have neither mechanical flexibility nor optical transparency, which have confined their applications in the flexible and transparent electronics.

The critical improvement in performance, according to the research, can be attributed to the incorporation of metal oxide nanowires with CNT films. Indium oxide nanowire, with the properties of wide band gap, high aspect ratio, and short diffusion path length, can be one of the best candidates for transparent electrochemical capacitors. Professor Zhou's lab has pioneered this material over the past several years.

These new devices, by contrast, "demonstrated enhanced specific capacitance, power density, energy density, and long operation cycles, compared to those supercapacitors made only by CNTs," says the new release.

"We successfully produced a prototype of flexible and transparent supercapacitors built on two important nanostructured materials (including metal oxide nanowires and CNTs).

The researchers not only created metal oxide nanowire / CNT heterogeneous films as active materials and current collecting electrodes for the supercapacitors, but also examined the stability of the transparent and flexible supercapacitors through a large cycle number of charge/discharge measurements.

The paper contains description of how the new devices are made:

"CNT films were fabricated by vacuum filtration method. An adhesive and flat poly (dimethysiloxane) (PDMS) stamp was adapted to peel the CNT film off of the filtration membrane and then released it onto a polyethylene terephtalate (PET) substrate. In2O3 nanowires with a diameter of ~20 nm and a length of ~5 ìm were synthesized by a pulsed laser deposition (PLD) method. The as-grown nanowires were sonicated into IPA solutions and then dispersed upon transferred CNT films to form In2O3 nanowire /CNT heterogeneous film for transparent and flexible supercapacitor study.

"In addition, with the increasing amount of In2O3 nanowires dispersed upon CNT films, the specific capacitance of the heterogeneous supercapacitor can be dramatically improved up from 25.4 Farad/gram to 64 Farad/gram. In comparisons to supercapacitors made by other transition metal oxide nanostructured materials, this observation indicates a good stability of In2O3 nanowire / CNT heterogeneous films for long-term capacitor applications."

####

About USC
Located in Los Angeles, a global center for arts, technology and international trade, the University of Southern California is one of the world’s leading private research universities. USC enrolls more international students than any other U.S. university and offers extensive opportunities for internships and study abroad. With a strong tradition of integrating liberal and professional education, USC fosters a vibrant culture of public service and encourages students to cross academic as well as geographic boundaries in their pursuit of knowledge.

For more information, please click here

Copyright © USC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Announcements

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Energy

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

OCSiAl Builds Worldwide Partnership Network November 12th, 2014

Drexel Engineers Improve Strength, Flexibility of Atom-Thick Films November 11th, 2014

A billion holes can make a battery November 10th, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE