Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Parabon NanoLabs Established to Revolutionize Nanotechnology Field with “Designer Macromolecules” Built from Grid-Optimized Sequences of DNA

Abstract:
Frontier Grid Platform Powers inSçquio Sequence Design Studio to Provide Breakthrough CAD Capabilities for Nano-engineered Products

Parabon NanoLabs Established to Revolutionize Nanotechnology Field with “Designer Macromolecules” Built from Grid-Optimized Sequences of DNA

Reston, VA | Posted on March 31st, 2009

Parabon Computation, a veteran provider of extreme-scale grid computing software and services, announced today the spin-off of Parabon NanoLabs, a subsidiary dedicated to designing and producing breakthrough products at the nano-scale. The company will initially focus on developing nano-scale sensors for therapeutics, diagnostics and other molecular detection systems, although the technology and resultant nanostructures have potentially limitless applications, ranging from detergent additives to next-generation electronics. The ability to precisely manipulate matter at the nano-scale is expected to usher in the Nanotechnology Revolution, which the National Science Foundation (NSF) estimates as having a market potential of $1 trillion by 2015.

In a radical departure from carbon-based (C60) nanotechnologies, such as buckyballs and carbon nanotubes, which gained media attention early in the millennium, the key to Parabon NanoLab's approach is synthetic DNA. Although DNA is best known as a carrier of genetic information, individual strands of DNA can be synthesized to have any sequence of bases (commonly represented by the letters A, C, G and T). Because certain sequences of DNA are mutually attractive, strands can be "programmed" with sequences that cause them to "swim to the right spot," with respect to one another, and then bind to form nanostructures of virtually any shape. By attaching DNA strands to other types of molecular subcomponents (e.g., therapeutics, nanoparticles or enzymes), nanostructures can be richly functionalized to form novel macromolecules with uses across countless application domains. The ability of DNA structures to self-assemble in this manner allows designer macromolecules to be deliberately and precisely engineered and then mass-produced - feats not achievable with any other nanotechnologies.

"The challenge to orchestrating successful self-assembly of a given design," according to Dr. Steven Armentrout, Parabon Founder and CEO, "is determining, from the countless possibilities, the rare few sets of DNA sequences that satisfy all of the design constraints. For that, we depend on inSçquio." Developed by Parabon over the past four years, the inSçquio Sequence Design Studio is a one-of-a-kind computer-aided design (CAD) application that optimizes DNA sequences for nano-engineering using grid-scale computing capacity.

A single DNA strand of just 135 bases has more possible sequence arrangements than the estimated number of atoms in the universe and some nanostructures have more than 15,000 bases. Since evaluation of each candidate sequence set requires compute-intensive molecular dynamics calculations, the computational workload to discover effective sequences is vast. Co-Founder and Chief Scientist of Parabon NanoLabs, Dr. Michael Norton, who is also a professor at Marshall University, believes this is why others have not tackled the sequence optimization problem. "Without the grid-scale capacity Parabon provides, solving a problem of this magnitude doesn't seem possible," he says, "so people shied away from it."

By simultaneously employing the power of thousands of computers on the Frontier® Grid Platform, the inSçquio optimizer discovers ideal sequences for nano-assembly. Utilizing this revolutionary technology, scientists within Parabon NanoLabs are creating a catalog of proprietary nano-products for licensing in several domain areas including cancer therapeutics, biometrics and bio-weapons defense. In addition, Parabon NanoLabs provides custom design and fabrication services for companies and researchers seeking to nano-enable their products.

According to Dr. Chris Dwyer, another co-founder of Parabon NanoLabs, and a professor at Duke University, the company formed to capitalize on the commercial opportunities made possible by its technology. Dr. Dwyer stated, "Beginning with the microfabrication of transistors in the 1960s, control of matter at the micro-scale enabled the era of electronic miniaturization that ultimately led to the Information Revolution. An even greater opportunity exists with the Nanotechnology Revolution and we've attracted the right combination of talent and technology to realize it."

####

About Parabon Computation
Parabon is a veteran provider of grid computing software and solutions, delivering affordable, extreme-scale Computation on Demand to customers across a wide variety of market sectors. A year after its 1999 founding, the company launched its flagship product, the Frontier® Grid Platform – a software solution that aggregates computational capacity of existing IT resources and delivers it as a flexible and scalable utility service. Frontier can be deployed internally, harnessing the excess computing power of an organization's existing enterprise assets; it can also be deployed across a virtualized data center, providing a complementary high-performance computing (HPC) service for cloud computing infrastructures. Finally, customers can tap into the power of the Parabon Computation Grid, the company’s online utility computing service. For more information, visit www.Parabon.com.

About Parabon® NanoLabs

Parabon NanoLabs, a subsidiary of Parabon Computation, Inc. designs and develops a new class of therapeutics and other products made possible by proprietary technology for precisely directing the self-assembly of designer macromolecules that are functionalized with molecular subcomponents (e.g., enzymes, metals or pharmaceuticals). Our nanoscale development platform gives our scientists the ability to design and construct multi-functional macromolecules from simpler subcomponents, replacing the current paradigm of "molecular discovery" with that of "molecular design." Parabon NanoLabs is actively developing macromolecules for use in the areas of cancer therapeutics, and nanoarrays for rapid readouts of DNA and nano-sensors for bioweapons defense. For more information, visit www.Parabon-NanoLabs.com.

For more information, please click here

Contacts:
Media Contact:
Larkin Communications for Parabon Computation
Kim Larkin, 202-391-5205

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Possible Futures

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Sensors

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Announcements

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanobiotechnology

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic