Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Parabon NanoLabs Established to Revolutionize Nanotechnology Field with “Designer Macromolecules” Built from Grid-Optimized Sequences of DNA

Abstract:
Frontier Grid Platform Powers inSçquio Sequence Design Studio to Provide Breakthrough CAD Capabilities for Nano-engineered Products

Parabon NanoLabs Established to Revolutionize Nanotechnology Field with “Designer Macromolecules” Built from Grid-Optimized Sequences of DNA

Reston, VA | Posted on March 31st, 2009

Parabon Computation, a veteran provider of extreme-scale grid computing software and services, announced today the spin-off of Parabon NanoLabs, a subsidiary dedicated to designing and producing breakthrough products at the nano-scale. The company will initially focus on developing nano-scale sensors for therapeutics, diagnostics and other molecular detection systems, although the technology and resultant nanostructures have potentially limitless applications, ranging from detergent additives to next-generation electronics. The ability to precisely manipulate matter at the nano-scale is expected to usher in the Nanotechnology Revolution, which the National Science Foundation (NSF) estimates as having a market potential of $1 trillion by 2015.

In a radical departure from carbon-based (C60) nanotechnologies, such as buckyballs and carbon nanotubes, which gained media attention early in the millennium, the key to Parabon NanoLab's approach is synthetic DNA. Although DNA is best known as a carrier of genetic information, individual strands of DNA can be synthesized to have any sequence of bases (commonly represented by the letters A, C, G and T). Because certain sequences of DNA are mutually attractive, strands can be "programmed" with sequences that cause them to "swim to the right spot," with respect to one another, and then bind to form nanostructures of virtually any shape. By attaching DNA strands to other types of molecular subcomponents (e.g., therapeutics, nanoparticles or enzymes), nanostructures can be richly functionalized to form novel macromolecules with uses across countless application domains. The ability of DNA structures to self-assemble in this manner allows designer macromolecules to be deliberately and precisely engineered and then mass-produced - feats not achievable with any other nanotechnologies.

"The challenge to orchestrating successful self-assembly of a given design," according to Dr. Steven Armentrout, Parabon Founder and CEO, "is determining, from the countless possibilities, the rare few sets of DNA sequences that satisfy all of the design constraints. For that, we depend on inSçquio." Developed by Parabon over the past four years, the inSçquio Sequence Design Studio is a one-of-a-kind computer-aided design (CAD) application that optimizes DNA sequences for nano-engineering using grid-scale computing capacity.

A single DNA strand of just 135 bases has more possible sequence arrangements than the estimated number of atoms in the universe and some nanostructures have more than 15,000 bases. Since evaluation of each candidate sequence set requires compute-intensive molecular dynamics calculations, the computational workload to discover effective sequences is vast. Co-Founder and Chief Scientist of Parabon NanoLabs, Dr. Michael Norton, who is also a professor at Marshall University, believes this is why others have not tackled the sequence optimization problem. "Without the grid-scale capacity Parabon provides, solving a problem of this magnitude doesn't seem possible," he says, "so people shied away from it."

By simultaneously employing the power of thousands of computers on the Frontier® Grid Platform, the inSçquio optimizer discovers ideal sequences for nano-assembly. Utilizing this revolutionary technology, scientists within Parabon NanoLabs are creating a catalog of proprietary nano-products for licensing in several domain areas including cancer therapeutics, biometrics and bio-weapons defense. In addition, Parabon NanoLabs provides custom design and fabrication services for companies and researchers seeking to nano-enable their products.

According to Dr. Chris Dwyer, another co-founder of Parabon NanoLabs, and a professor at Duke University, the company formed to capitalize on the commercial opportunities made possible by its technology. Dr. Dwyer stated, "Beginning with the microfabrication of transistors in the 1960s, control of matter at the micro-scale enabled the era of electronic miniaturization that ultimately led to the Information Revolution. An even greater opportunity exists with the Nanotechnology Revolution and we've attracted the right combination of talent and technology to realize it."

####

About Parabon Computation
Parabon is a veteran provider of grid computing software and solutions, delivering affordable, extreme-scale Computation on Demand to customers across a wide variety of market sectors. A year after its 1999 founding, the company launched its flagship product, the Frontier® Grid Platform – a software solution that aggregates computational capacity of existing IT resources and delivers it as a flexible and scalable utility service. Frontier can be deployed internally, harnessing the excess computing power of an organization's existing enterprise assets; it can also be deployed across a virtualized data center, providing a complementary high-performance computing (HPC) service for cloud computing infrastructures. Finally, customers can tap into the power of the Parabon Computation Grid, the company’s online utility computing service. For more information, visit www.Parabon.com.

About Parabon® NanoLabs

Parabon NanoLabs, a subsidiary of Parabon Computation, Inc. designs and develops a new class of therapeutics and other products made possible by proprietary technology for precisely directing the self-assembly of designer macromolecules that are functionalized with molecular subcomponents (e.g., enzymes, metals or pharmaceuticals). Our nanoscale development platform gives our scientists the ability to design and construct multi-functional macromolecules from simpler subcomponents, replacing the current paradigm of "molecular discovery" with that of "molecular design." Parabon NanoLabs is actively developing macromolecules for use in the areas of cancer therapeutics, and nanoarrays for rapid readouts of DNA and nano-sensors for bioweapons defense. For more information, visit www.Parabon-NanoLabs.com.

For more information, please click here

Contacts:
Media Contact:
Larkin Communications for Parabon Computation
Kim Larkin, 202-391-5205

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Possible Futures

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Sensors

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

Announcements

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Nanobiotechnology

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project