Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Manufacturing inefficiency

Timothy Gutowski
Photo / Donna Coveney
Timothy Gutowski
Photo / Donna Coveney

Abstract:
Study sees 'alarming' use of energy, materials in newer manufacturing processes

Manufacturing inefficiency

Cambridge, MA | Posted on March 30th, 2009

Modern manufacturing methods are spectacularly inefficient in their use of energy and materials, according to a detailed MIT analysis of the energy use of 20 major manufacturing processes.

Overall, new manufacturing systems are anywhere from 1,000 to one million times bigger consumers of energy, per pound of output, than more traditional industries. In short, pound for pound, making microchips uses up orders of magnitude more energy than making manhole covers.

At first glance, it may seem strange to make comparisons between such widely disparate processes as metal casting and chip making. But Professor Timothy Gutowski of MIT's Department of Mechanical Engineering, who led the analysis, explains that such a broad comparison of energy efficiency is an essential first step toward optimizing these newer manufacturing methods as they gear up for ever-larger production.

"The seemingly extravagant use of materials and energy resources by many newer manufacturing processes is alarming and needs to be addressed alongside claims of improved sustainability from products manufactured by these means," Gutowksi and his colleagues say in their conclusion to the study, which was recently published in the journal Environmental Science and Technology (ES&T).

Gutowksi notes that manufacturers have traditionally been more concerned about factors like price, quality, or cycle time, and not as concerned over how much energy their manufacturing processes use. This latter issue will become more important, however, as the new industries scale up -- especially if energy prices rise again or if a carbon tax is adopted, he says.

Solar panels are a good example. Their production, which uses some of the same manufacturing processes as microchips but on a large scale, is escalating dramatically. The inherent inefficiency of current solar panel manufacturing methods could drastically reduce the technology's lifecycle energy balance -- that is, the ratio of the energy the panel would produce over its useful lifetime to the energy required to manufacture it.

The new study is just "the first step in doing something about it," Gutowski says -- understanding which processes are most inefficient and need further research to develop less energy-intensive alternatives. For example, many of the newer processes involve vapor-phase processing (such as sputtering, in which a material is vaporized in a vacuum chamber so that it deposits a coating on an exposed surface in that chamber), which is usually much less efficient than liquid phase (such as depositing a coating from a liquid solution), but liquid processing alternatives might be developed.

The study covered everything "from soup to nuts" in terms of standard industrial methods, Gutowski says, "from heavy-duty old fashioned industries like a cast-iron foundry, all the way up to semiconductors and nanomaterials." It includes injection molding, sputtering, carbon nanofiber production and dry etching, along with more traditional machining, milling, drilling and melting. There were some boundaries on the processes studied, however: The researchers did not analyze production of pharmaceuticals or petroleum, and they only looked primarily at processes where electricity was the primary energy source.

The figures the team derived are actually conservative, Gutowski says, because they did not include some significant energy costs such as the energy required to make the materials themselves or the energy required to maintain the environment of the plant (such as air conditioning and filtration for clean rooms used in semiconductor processing). "All these things would make [the energy costs] worse," he says.

The bottom line is that "new processes are huge users of materials and energy," he says. Because some of these processes are so new, "they will be optimized and improved over time," he says. But as things stand now, over the last several decades as traditional processes such as machining and casting have increasingly given way to newer ones for the production of semiconductors, MEMS and nano-materials and devices, for a given quantity of output "we have increased our energy and materials consumption by three to six orders of magnitude."

One message from the study is that "claims that these technologies are going to save us in some way need closer scrutiny. There's a significant energy cost involved here," he says. And another is that "each of these processes could be improved," and using the analytical tools developed by the MIT team for this study would be a useful first step in such a detailed analysis.

In addition to Gutowski, the study was done by current and former MIT mechanical engineering students Matthew Branham, Jeffrey Dahmus, Alissa Jones and Alexandre Thiriez, and Dusan Sekulic, professor of mechanical engineering at the University of Kentucky. It was funded by the National Science Foundation.

####

Contacts:
News Office
Room 11-400
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Materials/Metamaterials

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Announcements

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Industrial

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Non-Enzyme Sensor Detects Lead, Hydrogen Peroxide July 10th, 2014

New Method Introduced for Synthesis of Hydroxyapatite Nanoparticles July 5th, 2014

Solar/Photovoltaic

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

New Study Raises Possibility of Production of P-Type Solar Cells July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE