Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanopore Sequencing Could Slash DNA Analysis Costs

Abstract:
Over the past 5 years, researchers have been exploring the use of nanoscale pores as nucleic acid sequencing tools. In theory, such pores should generate a unique response characteristic of each of the four nucleotide bases as a piece of DNA moves through the pore.

Nanopore Sequencing Could Slash DNA Analysis Costs

Bethesda, MD | Posted on March 28th, 2009

Now, investigators at Oxford Nanopore Technologies in the United Kingdom have successfully tested a system that can identify a piece of DNA's bases directly as it moves through a modified protein nanopore. With further development, this system could greatly reduce the expensive equipment, chemicals, and lab time needed for current scanning methods, said Gordon Sanghera, Ph.D., Oxford's chief executive.

"You move from days to hours to get the same information, and the equipment required is a lot simpler," Dr. Sanghera said.

Most current DNA sequencers use fluorescent chemical tags that attach to each of the four chemicals that make up a "letter" in the DNA sequence. Sophisticated cameras and software read the tags to identify the genes. In contrast, the system described by these Oxford scientists in the journal Nature Nanotechnology sends DNA one letter at a time through a microscopic, biologically engineered hole, or "nanopore." An electrical current passed across the hole responds differently to each of the four letters in the genetic code, allowing scientists to accurately read each letter.

"This demonstration that you can distinguish among the four bases with a purely electronic signal I think is just an incredible advance," said Jeffery Schloss, Ph.D., director of the National Human Genome Research Institute's sequencing technology program.

Advances in sequencing technology have been swift since the Human Genome Project completed its map of the genetic code in 2003 for $300 million. The current rate hovers around $100,000, although the Federal Government is pledging millions to DNA sequencing research in hopes of achieving a $1,000 genome scan by 2014. Oxford believes its nanopore sequencing could be a contender for the $1,000 scan. However, the company has used nanopores to read only individual DNA letters so far. The company is still working to improve its system to scan entire strands of DNA.
This work is detailed in the paper "Continuous base identification for single-molecule nanopore DNA sequencing." Researchers from the University of Oxford also participated in this study. An abstract of this paper is available at the journal's Web site.

View abstract here www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2009.12.html

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Possible Futures

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Nanomedicine

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Sensors

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project