Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanopore Sequencing Could Slash DNA Analysis Costs

Abstract:
Over the past 5 years, researchers have been exploring the use of nanoscale pores as nucleic acid sequencing tools. In theory, such pores should generate a unique response characteristic of each of the four nucleotide bases as a piece of DNA moves through the pore.

Nanopore Sequencing Could Slash DNA Analysis Costs

Bethesda, MD | Posted on March 28th, 2009

Now, investigators at Oxford Nanopore Technologies in the United Kingdom have successfully tested a system that can identify a piece of DNA's bases directly as it moves through a modified protein nanopore. With further development, this system could greatly reduce the expensive equipment, chemicals, and lab time needed for current scanning methods, said Gordon Sanghera, Ph.D., Oxford's chief executive.

"You move from days to hours to get the same information, and the equipment required is a lot simpler," Dr. Sanghera said.

Most current DNA sequencers use fluorescent chemical tags that attach to each of the four chemicals that make up a "letter" in the DNA sequence. Sophisticated cameras and software read the tags to identify the genes. In contrast, the system described by these Oxford scientists in the journal Nature Nanotechnology sends DNA one letter at a time through a microscopic, biologically engineered hole, or "nanopore." An electrical current passed across the hole responds differently to each of the four letters in the genetic code, allowing scientists to accurately read each letter.

"This demonstration that you can distinguish among the four bases with a purely electronic signal I think is just an incredible advance," said Jeffery Schloss, Ph.D., director of the National Human Genome Research Institute's sequencing technology program.

Advances in sequencing technology have been swift since the Human Genome Project completed its map of the genetic code in 2003 for $300 million. The current rate hovers around $100,000, although the Federal Government is pledging millions to DNA sequencing research in hopes of achieving a $1,000 genome scan by 2014. Oxford believes its nanopore sequencing could be a contender for the $1,000 scan. However, the company has used nanopores to read only individual DNA letters so far. The company is still working to improve its system to scan entire strands of DNA.
This work is detailed in the paper "Continuous base identification for single-molecule nanopore DNA sequencing." Researchers from the University of Oxford also participated in this study. An abstract of this paper is available at the journal's Web site.

View abstract here www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2009.12.html

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Possible Futures

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Sensors

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Nanobiotechnology

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project