Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Twin Nanoparticle Shown Effective at Targeting, Killing Breast Cancer Cells

Abstract:
A team of investigators at Brown University has developed a novel way to treat a class of breast cancer cells. The team has created twin nanoparticles that specifically targets the Her-2 tumor cell and unload a cancer-fighting drug directly into it. The result is a boost in antitumor activity while minimizing side effects. The findings of this study have been published in the Journal of the American Chemical Society.

Twin Nanoparticle Shown Effective at Targeting, Killing Breast Cancer Cells

Bethesda, MD | Posted on March 26th, 2009

Breast cancer patients face many horrors, including those that arise when fighting the cancer itself. Medications given during chemotherapy can have wicked side effects, including vomiting, dizziness, anemia, and hair loss. These side effects occur because medications released into the body target healthy cells as well as tumor cells.

The trick becomes how to deliver cancer-fighting drugs directly to the tumor cells. Brown University chemists think they have an answer: They have created twin nanoparticles that specifically target the Her-2-positive tumor cell, a type of malignant cell that affects up to 30% of breast cancer patients.

"Like a missile, you don't want the anticancer drugs to explode everywhere," explained Shouheng Sun, Ph.D., the study's lead investigator. "You want it to target the tumor cells and not the healthy ones."

The researchers created the twin nanoparticle by binding one gold nanoparticle with an iron oxide (Fe3O4) nanoparticle. On one end, they attached a synthetic protein antibody to the iron oxide nanoparticle. On the other end, they attached cisplatin to the gold nanoparticle. Visually, the whole contraption looks like an elongated dumbbell, but it may be better to think of it as a vehicle, equipped with a very good global positioning system (GPS), that is ferrying a very important passenger.

In this case, the GPS comes from the iron oxide nanoparticle, which homes in on a Her-2 breast cancer cell like a guided missile. The attached antibody is critical, because it binds to the antigen, a protein located on the surface of the malignant cell. Put another way, the nanoparticle vehicle "docks" on the tumor cell when the antibody and the antigen become connected. Once docked, the vehicle unloads its "passenger," the cisplatin, into the malignant cell.

In a neat twist, the Brown-led team used a pH-sensitive covalent bond to connect the gold nanoparticle with the cisplatin to ensure that the drug was not released into the body but remained attached to the nanoparticle until it was time for it to be released into the malignant cell. In laboratory tests, the gold-iron oxide nanoparticle combination successfully targeted the cancer cells and released the anticancer drugs into the malignant cells, killing the cells in up to 80% of cases. "We've made a Mercedes Benz now," Dr. Sun joked. "It's not a Honda Civic anymore."

The research builds on previous work in Dr. Sun's lab, where researchers created peptide-coated, iron oxide nanoparticles that, in tests with mice, successfully located a brain tumor cell called U87MG. The researchers will test the breast cancer nanoparticle system in laboratory tests with animals. They also plan to create twin nanoparticles that can release the drug via remote-controlled magnetic heating.

This study, which was supported by the National Cancer Institute's Office of Technology and Industrial Relations, appears in the paper "Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery." An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanomedicine

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Arrowhead to Report Fiscal 2015 Second Quarter Financial Results May 4th, 2015

New Nanodrug Produced in Iran from Milk Thistle May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Announcements

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Nanobiotechnology

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

An effective, biodegradable and broad-spectrum nanoparticles as potent antibacterial agents April 28th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project