Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Faster, Cheaper Fuel Cells: New $1.6 Million DoE Grant Supports Fuel Cell Manufacturing Innovations

Abstract:
Researchers at Rensselaer Polytechnic Institute have won a $1.6 million federal grant to develop new methods for manufacturing a key fuel cell component.

Faster, Cheaper Fuel Cells: New $1.6 Million DoE Grant Supports Fuel Cell Manufacturing Innovations

Troy, NY | Posted on March 25th, 2009

The multi-year grant, awarded by the U.S. Department of Energy, aims to create new technology and processes for faster, more cost-effective manufacturing of fuel cell membrane electrode assemblies (MEAs). Comprised of a stacked proton exchange membrane (PEM), catalyst, and electrodes, MEAs are the heart and soul of a fuel cell.

"The new system we plan to develop is essentially a high-speed, high-quality assembly process for fuel cell MEAs," said Ray Puffer, principle investigator of the project and program director for industrial automation at Rensselaer's Center for Automation Technologies and Systems (CATS). "If successful, we anticipate this project will yield a major reduction in the time it takes to make MEAs, as well as improved uniformity, less defects, and lower manufacturing costs. The end result will be cheaper, more reliable fuel cells for everyone."

Fuel cells are a promising green technology that convert a fuel, such as hydrogen or, less commonly, natural gas, into electricity via an electro-chemical reaction. In the case of hydrogen fuel cells, the only byproducts are water and heat, making it a true zero-emissions energy source. The prohibitive cost of producing and manufacturing fuel cells, however, have thus far prevented more widespread adoption and use of the technology. Typical fuel cell applications under development include portable electronics, such as laptop computers or tactical radios for the military, as well as with vehicles, and residential or industrial combined heat and power systems.

Like every mass-produced product, from automobiles to candy bars, it is imperative that every unit to roll off the manufacturing line look, perform, taste, and behave exactly the same. Fuel cell MEAs are no exception. Working with Rensselaer collaborators Daniel Walczyk, professor of mechanical, aerospace, and nuclear engineering, as well as CATS Director John Wen, professor of electrical, computer, and systems engineering, Puffer will develop materials, designs, and adaptive process controls for MEA manufacturing. The team will work to automate new sensing technology into the MEA pressing process, to help ensure less defects and greater uniformity of performance.

The second main objective is to reduce the time it takes to press and assemble MEAs. To accomplish this, Puffer and his team will develop a novel, robust ultrasonic bonding process for assembling and fusing together the different components of high-temperature PEM MEAs. Ultrasonic welding uses high-frequency vibrations and pressure, rather than heat, to conjoin two pieces of metal or plastic. Early ultrasonic pressing designs and experiments have been promising, Puffer said, and have the potential to reduce the pressing process of a single MEA to less than one second.

"To be cost effective, the time it takes to manufacture a single MEA must be measured in milliseconds, or at most, a few seconds," Puffer said. "Similarly, the time it takes to assemble a stack must be measured in seconds or minutes, instead of hours."

The new DoE grant awards $1.61 million over 42 months. An additional $870,000 in cost share by project participants brings the total project budget to nearly $2.5 million. Partnering with Rensselaer are: Arizona State University, of Tempe, Ariz.; BASF Fuel Cell GmbH, of Germany and Somerset, N.J.; Progressive Machine and Design, LLC, of Victor, N.Y.; and UltraCell Corp., of Livermore, Calif.

For more information, visit the CATS Web site. The CATS is supported by the New York State Foundation for Science, Technology and Innovation (NYSTAR) as a designated Center for

####

About Rensselaer Polytechnic Institute
Throughout its history, Rensselaer research has produced ground-breaking work in a broad range of important areas.

Early RPI engineering graduates built bridges that linked people, commerce, and communities. Today, Rensselaer people are building the bridges that will link the world to the promises of new technologies.

The collaborative efforts of our students, faculty, corporate partners, and government agencies are generating a new momentum in research and the development of innovative technologies, including biotechnology, information technology, and nanotechnology.

Creating and applying knowledge, and interdisciplinary inquiry, with a rigorous approach to solving problems, Rensselaer men and Rensselaer women are fulfilling the university’s role as a place where people find innovative solutions to complex technical challenges.

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Announcements

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Energy

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

Nanoreporters tell 'sour' oil from 'sweet': Rice University's hydrogen sulfide nanoreporters gather intel on oil before pumping April 22nd, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Fuel Cells

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

Big Step for Next-Generation Fuel Cells and Electrolyzers: Researchers at Berkeley and Argonne National Labs Discover Highly Promising New Class of Nanocatalyst February 27th, 2014

Research and applications of iron oxide nanoparticles February 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE