Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Faster, Cheaper Fuel Cells: New $1.6 Million DoE Grant Supports Fuel Cell Manufacturing Innovations

Abstract:
Researchers at Rensselaer Polytechnic Institute have won a $1.6 million federal grant to develop new methods for manufacturing a key fuel cell component.

Faster, Cheaper Fuel Cells: New $1.6 Million DoE Grant Supports Fuel Cell Manufacturing Innovations

Troy, NY | Posted on March 25th, 2009

The multi-year grant, awarded by the U.S. Department of Energy, aims to create new technology and processes for faster, more cost-effective manufacturing of fuel cell membrane electrode assemblies (MEAs). Comprised of a stacked proton exchange membrane (PEM), catalyst, and electrodes, MEAs are the heart and soul of a fuel cell.

"The new system we plan to develop is essentially a high-speed, high-quality assembly process for fuel cell MEAs," said Ray Puffer, principle investigator of the project and program director for industrial automation at Rensselaer's Center for Automation Technologies and Systems (CATS). "If successful, we anticipate this project will yield a major reduction in the time it takes to make MEAs, as well as improved uniformity, less defects, and lower manufacturing costs. The end result will be cheaper, more reliable fuel cells for everyone."

Fuel cells are a promising green technology that convert a fuel, such as hydrogen or, less commonly, natural gas, into electricity via an electro-chemical reaction. In the case of hydrogen fuel cells, the only byproducts are water and heat, making it a true zero-emissions energy source. The prohibitive cost of producing and manufacturing fuel cells, however, have thus far prevented more widespread adoption and use of the technology. Typical fuel cell applications under development include portable electronics, such as laptop computers or tactical radios for the military, as well as with vehicles, and residential or industrial combined heat and power systems.

Like every mass-produced product, from automobiles to candy bars, it is imperative that every unit to roll off the manufacturing line look, perform, taste, and behave exactly the same. Fuel cell MEAs are no exception. Working with Rensselaer collaborators Daniel Walczyk, professor of mechanical, aerospace, and nuclear engineering, as well as CATS Director John Wen, professor of electrical, computer, and systems engineering, Puffer will develop materials, designs, and adaptive process controls for MEA manufacturing. The team will work to automate new sensing technology into the MEA pressing process, to help ensure less defects and greater uniformity of performance.

The second main objective is to reduce the time it takes to press and assemble MEAs. To accomplish this, Puffer and his team will develop a novel, robust ultrasonic bonding process for assembling and fusing together the different components of high-temperature PEM MEAs. Ultrasonic welding uses high-frequency vibrations and pressure, rather than heat, to conjoin two pieces of metal or plastic. Early ultrasonic pressing designs and experiments have been promising, Puffer said, and have the potential to reduce the pressing process of a single MEA to less than one second.

"To be cost effective, the time it takes to manufacture a single MEA must be measured in milliseconds, or at most, a few seconds," Puffer said. "Similarly, the time it takes to assemble a stack must be measured in seconds or minutes, instead of hours."

The new DoE grant awards $1.61 million over 42 months. An additional $870,000 in cost share by project participants brings the total project budget to nearly $2.5 million. Partnering with Rensselaer are: Arizona State University, of Tempe, Ariz.; BASF Fuel Cell GmbH, of Germany and Somerset, N.J.; Progressive Machine and Design, LLC, of Victor, N.Y.; and UltraCell Corp., of Livermore, Calif.

For more information, visit the CATS Web site. The CATS is supported by the New York State Foundation for Science, Technology and Innovation (NYSTAR) as a designated Center for

####

About Rensselaer Polytechnic Institute
Throughout its history, Rensselaer research has produced ground-breaking work in a broad range of important areas.

Early RPI engineering graduates built bridges that linked people, commerce, and communities. Today, Rensselaer people are building the bridges that will link the world to the promises of new technologies.

The collaborative efforts of our students, faculty, corporate partners, and government agencies are generating a new momentum in research and the development of innovative technologies, including biotechnology, information technology, and nanotechnology.

Creating and applying knowledge, and interdisciplinary inquiry, with a rigorous approach to solving problems, Rensselaer men and Rensselaer women are fulfilling the university’s role as a place where people find innovative solutions to complex technical challenges.

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Announcements

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Energy

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project