Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists Patent Corrosion-Resistant Nano-Coating for Metals

Aluminum fins from a geothermal power plant subjected to 24,000 wet/dry cycles of exposure to briny conditions. The far left fin, with no protective coating, completely dissolved. The middle fin had a nano coating with a low level of cerium oxide, while the far right fin had a coating with a higher concentration of cerium oxide nanoparticles.
Aluminum fins from a geothermal power plant subjected to 24,000 wet/dry cycles of exposure to briny conditions. The far left fin, with no protective coating, completely dissolved. The middle fin had a nano coating with a low level of cerium oxide, while the far right fin had a coating with a higher concentration of cerium oxide nanoparticles.

Abstract:
Thinner, less toxic than existing coatings; efficient and economical to produce

Scientists Patent Corrosion-Resistant Nano-Coating for Metals

Upton, NY | Posted on March 25th, 2009

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have developed a method for coating metal surfaces with an ultrathin film containing nanoparticles - particles measuring billionths of a meter - which renders the metal resistant to corrosion and eliminates the use of toxic chromium for this purpose. The scientists have been awarded U.S. Patent number 7,507,480 for their method and the corrosion-resistant metals made from it. The technology is available for licensing.

"Our coating is produced right on the metal using a simple two- or three-step process to produce a thin film structure by crosslinking among the component compounds," said chemist Toshifumi Sugama, a guest researcher at Brookhaven Lab. "The result is a layer less than 10 nanometers thick that protects the metal from corrosion, even in briny conditions."

Corrosion resistance is essential for metals used in a wide range of applications, from electronics to aviation to power plants. Traditionally, compounds containing a toxic form of chromium have provided the best corrosion resistance. Scientists looking to develop chromium-free alternatives have been unable to achieve the thin layers desirable for many applications. "Ultrathin coatings reduce the amount of material needed to provide corrosion resistance, thereby reducing the cost," Sugama explained.

Sugama's approach achieves several goals - low toxicity and excellent corrosion resistance in a film measuring less than 10 nanometers that can be applied to a wide array of metals, including aluminum, steel, nickel, zinc, copper, bronze, and brass. According to Sugama, the coating should be of specific interest to industries that produce coated valves, pumps, and other components, as well as the manufacturers of aluminum fins used in air-cooled condensers at geothermal power plants, where preventing brine-induced corrosion is a high priority.

The coating can be made in a variety of ways suited to a particular application. In one embodiment, it starts as a liquid solution that can be sprayed onto the metal, or the metal can be dipped into it. The metal is then subjected to one or more treatment steps, sometimes including heating for a period of time, to trigger cross-linking reactions between the compounds, and simultaneously, to form corrosion-inhibiting metal oxide nanoparticles, such as environmentally benign cerium-based oxides.

"Among the key factors that ensure the maximum corrosion-mitigating performance of these ultrathin coating films are the great water-repellency, the deposition of metal oxide nanoparticles over the metal's surface, and their excellent adhesion to metal. The combination of these factors considerably decreased the corrosion of metals," said Sugama.

The corrosion resistance of these coatings can be comparable, and even superior, to chromium-based coatings, he said. In fact, these new coatings provide even better coverage of metal surfaces than chromium coatings. Sugama added, "This is particularly advantageous when the metal to be coated possesses fine structural detail."

Because the method deposits such a thin coating of material, it is highly economical and efficient.

For information about licensing this technology, contact Brookhaven Lab Licensing Associate Poornima Upadhya, (631)-344-4711,

This research was funded by DOE's Office of Energy Efficiency and Renewable Energy.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Contacts:
Karen McNulty Walsh

(631) 344-8350

Mona Rowe

(631) 344-5056

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Thin films

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Researchers enable solar cells to use more sunlight February 25th, 2015

Products

Toronto-based Environmental Technology Pioneer Green Earth Nano Science Expands in EU February 6th, 2015

DELSEY by Philippe Starck DELSEY Launches New Collection by Philippe Starck February 4th, 2015

NEI introduces NANOMYTE® SuperAi, a Durable Anti-ice Coating December 4th, 2014

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

Materials/Metamaterials

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Patents/IP/Tech Transfer/Licensing

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

Nanotech Discoveries Move from Lab to Marketplace with Lintec Deal: Licensing Partnership Brings Together University Technology, New Richardson-Based Facility Directed by Alumni February 9th, 2015

Environment

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Heightened Efficiency in Purification of Wastewater Using Nanomembranes March 3rd, 2015

Colon + septic tank = unique, at times stinky, study: Researchers use lab-scale human colon and septic tank to study impact of copper nanoparticles on the environment March 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE