Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists Patent Corrosion-Resistant Nano-Coating for Metals

Aluminum fins from a geothermal power plant subjected to 24,000 wet/dry cycles of exposure to briny conditions. The far left fin, with no protective coating, completely dissolved. The middle fin had a nano coating with a low level of cerium oxide, while the far right fin had a coating with a higher concentration of cerium oxide nanoparticles.
Aluminum fins from a geothermal power plant subjected to 24,000 wet/dry cycles of exposure to briny conditions. The far left fin, with no protective coating, completely dissolved. The middle fin had a nano coating with a low level of cerium oxide, while the far right fin had a coating with a higher concentration of cerium oxide nanoparticles.

Abstract:
Thinner, less toxic than existing coatings; efficient and economical to produce

Scientists Patent Corrosion-Resistant Nano-Coating for Metals

Upton, NY | Posted on March 25th, 2009

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have developed a method for coating metal surfaces with an ultrathin film containing nanoparticles - particles measuring billionths of a meter - which renders the metal resistant to corrosion and eliminates the use of toxic chromium for this purpose. The scientists have been awarded U.S. Patent number 7,507,480 for their method and the corrosion-resistant metals made from it. The technology is available for licensing.

"Our coating is produced right on the metal using a simple two- or three-step process to produce a thin film structure by crosslinking among the component compounds," said chemist Toshifumi Sugama, a guest researcher at Brookhaven Lab. "The result is a layer less than 10 nanometers thick that protects the metal from corrosion, even in briny conditions."

Corrosion resistance is essential for metals used in a wide range of applications, from electronics to aviation to power plants. Traditionally, compounds containing a toxic form of chromium have provided the best corrosion resistance. Scientists looking to develop chromium-free alternatives have been unable to achieve the thin layers desirable for many applications. "Ultrathin coatings reduce the amount of material needed to provide corrosion resistance, thereby reducing the cost," Sugama explained.

Sugama's approach achieves several goals - low toxicity and excellent corrosion resistance in a film measuring less than 10 nanometers that can be applied to a wide array of metals, including aluminum, steel, nickel, zinc, copper, bronze, and brass. According to Sugama, the coating should be of specific interest to industries that produce coated valves, pumps, and other components, as well as the manufacturers of aluminum fins used in air-cooled condensers at geothermal power plants, where preventing brine-induced corrosion is a high priority.

The coating can be made in a variety of ways suited to a particular application. In one embodiment, it starts as a liquid solution that can be sprayed onto the metal, or the metal can be dipped into it. The metal is then subjected to one or more treatment steps, sometimes including heating for a period of time, to trigger cross-linking reactions between the compounds, and simultaneously, to form corrosion-inhibiting metal oxide nanoparticles, such as environmentally benign cerium-based oxides.

"Among the key factors that ensure the maximum corrosion-mitigating performance of these ultrathin coating films are the great water-repellency, the deposition of metal oxide nanoparticles over the metal's surface, and their excellent adhesion to metal. The combination of these factors considerably decreased the corrosion of metals," said Sugama.

The corrosion resistance of these coatings can be comparable, and even superior, to chromium-based coatings, he said. In fact, these new coatings provide even better coverage of metal surfaces than chromium coatings. Sugama added, "This is particularly advantageous when the metal to be coated possesses fine structural detail."

Because the method deposits such a thin coating of material, it is highly economical and efficient.

For information about licensing this technology, contact Brookhaven Lab Licensing Associate Poornima Upadhya, (631)-344-4711,

This research was funded by DOE's Office of Energy Efficiency and Renewable Energy.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Contacts:
Karen McNulty Walsh

(631) 344-8350

Mona Rowe

(631) 344-5056

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Thin films

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

Products

Oxford Nanoimaging to provide desktop super-resolution microscopes May 10th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 14th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 10th, 2016

Materials/Metamaterials

New reaction for the synthesis of nanostructures July 21st, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Announcements

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Patents/IP/Tech Transfer/Licensing

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

New nanoscale technologies could revolutionize microscopes, study of disease July 20th, 2016

Keystone Nano selected as a top scoring company by NCI investor review panel July 19th, 2016

Integrated trio of 2-D nanomaterials unlocks graphene electronics applications: Voltage-controlled oscillator developed at UC Riverside could be used in thousands of applications from computers to wearable technologies July 7th, 2016

Environment

A 'smart dress' for oil-degrading bacteria July 24th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic