Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sophisticated Structures Assembled with Magnets

Uniform clusters of micron-scaled particles assembled by magnetism | Benjamin Yellen lab, Pratt School of Engineering
Uniform clusters of micron-scaled particles assembled by magnetism | Benjamin Yellen lab, Pratt School of Engineering

Abstract:
Technique holds promise for mass-produced nanoparticles

Sophisticated Structures Assembled with Magnets

Durham, NC | Posted on March 24th, 2009

What do Saturn and flowers have in common?

As shapes, both possess certain symmetries that are easily recognizable in the natural world. Now, at an extremely small level, researchers from Duke University and the University of Massachusetts have created a unique set of conditions in which tiny particles within a solution will consistently assemble themselves into these and other complex shapes.

By manipulating the magnetization of a liquid solution, the researchers have for the first time coaxed magnetic and non-magnetic materials to form intricate nano-structures. The resulting structures can be "fixed," meaning they can be permanently linked together. This raises the possibility of using these structures as basic building blocks for such diverse applications as advanced optics, cloaking devices, data storage and bioengineering.

Changing the levels of magnetization of the fluid controls how the particles are attracted to or repelled by each other. By appropriately tuning these interactions, the magnetic and non-magnetic particles form around each other much like a snowflake forms around a microscopic dust particle.

"We have demonstrated that subtle changes in the magnetization of a fluid can create an environment where a mixture of different particles will self-assemble into complex superstructures," said Randall Erb, fourth-year graduate student. He performed these experiments in conjunction with another graduate student Hui Son, in the laboratory of Benjamin Yellen, assistant professor of mechanical engineering and materials science and lead member of the research team.

The results of the Duke experiments appear in Feb. 19 issue of the journal Nature.

The nano-structures are formed inside a liquid known as a ferrofluid, which is a solution consisting of suspensions of nanoparticles composed of iron-containing compounds. One of the unique properties of these fluids is that they become highly magnetized in the presence of external magnetic fields. The unique ferrofluids used in these experiments were developed with colleagues Bappaditya Samanta and Vincent Rotello at the University of Massachusetts.

"The key to the assembly of these nano-structures is to fine-tune the interactions between positively and negatively magnetized particles," Erb said. "This is achieved through varying the concentration of ferrofluid particles in the solution. The Saturn and flower shapes are just the first published examples of a range of potential structures that can be formed using this technique."

According to Yellen, researchers have long been able to create tiny structures made up of a single particle type, but the demonstration of sophisticated structures assembling in solutions containing multiple types of particles has never before been achieved. The complexity of these nano-structures determines how they can ultimately be used.

"It appears that a rich variety of different particle structures are possible by changing the size, type and or degree of magnetism of the particles," Yellen said.

Yellen foresees the use of these nano-structures in advanced optical devices, such as sensors, where different nano-structures could be designed to possess custom-made optical properties. Yellen also envisions that rings composed of metal particles could be used for antenna designs, and perhaps as one of the key components in the construction of materials that display artificial "optical magnetism" and negative magnetic permeability.

In the Duke experiments, the nano-structures were created by applying a uniform magnetic field to a liquid containing various types of magnetic and non-magnetic colloidal particles contained between transparent glass slides to enable real-time microscopic observations of the assembly process. Because of the unique nature of this "bulk" assembly technique, Yellen believes that the process could easily be scaled up to create large quantities of custom-designed nano-structures in high-volume reaction vessels. However, the trick is to also be able to glue the structures together, because they will fall apart when the external field is turned off, he said.

"The magnetic forces assembling these particles are reversible," Yellen said. "We were able to lock these nano-structures in their intended shapes both by using chemical glues and by simple heating."

The Duke team plans to test different combinations of particles and ferrofluids developed by the University of Massachusetts team to create new types of nano-structures. They also want to try to make even smaller nano-structures to find the limitations of the assembly process, and study the interesting optical properties which are expected from these structures.

"While we have shown that we can get small magnetic particles to form complex and beautiful structures, we believe that based on theory and the results of preliminary experiments, we should be able manipulate even smaller particles by using other magnetic particles and ferrofluids," Yellen said.

The research was supported by the National Science Foundation.

(visit their website for a video http://news.duke.edu/2009/02/saturnflower.html)

####

Contacts:
Duke News and Communications
615 Chapel Drive, Box 90563
Durham, NC 27708-0563
T: (919) 684-2823

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Self Assembly

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New conductive ink for electronic apparel June 25th, 2015

Giving atoms their marching orders: Highly homogeneous nanotube enforces single-file flow of atoms in gas diffusion. Direct comparison of single-file and Fickian diffusion possible with new system described by researchers at the University of South Carolina and University of Flor June 24th, 2015

n-tech Research Issues Report on Smart Coatings Market, Free Download Available on Firm’s Website June 24th, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Military

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Photonics/Optics/Lasers

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project