Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > R&D Profile: Silicon on Ceramics - A New Concept for Micro-Nano-Integration on Wafer Level

March 24th, 2009

R&D Profile: Silicon on Ceramics - A New Concept for Micro-Nano-Integration on Wafer Level

Abstract:
One of the challenges of using nano effects and patterns in semiconductor devices is the realization of an intelligent and robust connection to the macro world.

Story:
LTCC (low temperature cofired ceramics) are established materials for "System in Package" solutions due to the integration of passive elements, such as capacitors or resistors, associated with short development times as well as simple and cheap processing. The advantages of reliability, thermal stability and chemically inert packages offered by ceramic interconnect devices are combined with thin film precision by means of a smart wafer level packaging process. Tough mechanical, electrical or fluidic coupling of nano elements without affecting their functionality is guaranteed by a fully silicon-ceramic wafer compound material. The method is based on a bonding procedure between a nano patterned silicon surface (modified Black Silicon) and LTCC. A LTCC tape with adapted TCE to silicon is joined with a silicon wafer by lamination and pressure assisted firing. This manufactured "Silicon-On-Ceramic"-substrate enables a wide range of design solutions, in witch several, unfired ceramic layers are prepared with vias, wirings and fluidic channels using standard LTCC-technologies. After sintering, the ceramic acts as a carrier system with electrical and fluidic properties.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic