Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > R&D Profile: Silicon on Ceramics - A New Concept for Micro-Nano-Integration on Wafer Level

March 24th, 2009

R&D Profile: Silicon on Ceramics - A New Concept for Micro-Nano-Integration on Wafer Level

Abstract:
One of the challenges of using nano effects and patterns in semiconductor devices is the realization of an intelligent and robust connection to the macro world.

Story:
LTCC (low temperature cofired ceramics) are established materials for "System in Package" solutions due to the integration of passive elements, such as capacitors or resistors, associated with short development times as well as simple and cheap processing. The advantages of reliability, thermal stability and chemically inert packages offered by ceramic interconnect devices are combined with thin film precision by means of a smart wafer level packaging process. Tough mechanical, electrical or fluidic coupling of nano elements without affecting their functionality is guaranteed by a fully silicon-ceramic wafer compound material. The method is based on a bonding procedure between a nano patterned silicon surface (modified Black Silicon) and LTCC. A LTCC tape with adapted TCE to silicon is joined with a silicon wafer by lamination and pressure assisted firing. This manufactured "Silicon-On-Ceramic"-substrate enables a wide range of design solutions, in witch several, unfired ceramic layers are prepared with vias, wirings and fluidic channels using standard LTCC-technologies. After sintering, the ceramic acts as a carrier system with electrical and fluidic properties.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chip Technology

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project