Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NanoCenter Improves Energy Storage Options

Electrostatic nanocapacitors formed in nanoporous anodic aluminum oxide (darker yellow) film by sequential atomic layer deposition of metal (blue), insulator (yellow), and metal. Insert: cross-section of actual structure, represented as rescaled scanning electron micrograph. (A. James Clark School of Engineering, U-Md.)
Electrostatic nanocapacitors formed in nanoporous anodic aluminum oxide (darker yellow) film by sequential atomic layer deposition of metal (blue), insulator (yellow), and metal. Insert: cross-section of actual structure, represented as rescaled scanning electron micrograph. (A. James Clark School of Engineering, U-Md.)

Abstract:
In order to save money and energy, many people are purchasing hybrid electric cars or installing solar panels on the roofs of their homes. But both have a problem—the technology to store the electrical power and energy is inadequate.

NanoCenter Improves Energy Storage Options

College Park, MD | Posted on March 23rd, 2009

Battery systems that fit in cars don't hold enough energy for driving distances, yet take hours to recharge and don't give much power for acceleration. Renewable sources like solar and wind deliver significant power only part time, but devices to store their energy are expensive and too inefficient to deliver enough power for surge demand.

Researchers at the Maryland NanoCenter at the University of Maryland, College Park, have developed new systems for storing electrical energy derived from alternative sources that are, in some cases, 10 times more efficient than what is commercially available. The results of their research are available in the latest issue of Nature Nanotechnology.

"Renewable energy sources like solar and wind provide time-varying, somewhat unpredictable energy supply, which must be captured and stored as electrical energy until demanded," said Gary Rubloff, director of the University of Maryland's NanoCenter. "Conventional devices to store and deliver electrical energy - batteries and capacitors - cannot achieve the needed combination of high energy density, high power, and fast recharge that are essential for our energy future."

Researchers working with Professor Rubloff and his collaborator, Professor Sang Bok Lee, have developed a method to significantly enhance the performance of electrical energy storage devices.

Using new processes central to nanotechnology, they create millions of identical nanostructures with shapes tailored to transport energy as electrons rapidly to and from very large surface areas where they are stored. Materials behave according to physical laws of nature. The Maryland researchers exploit unusual combinations of these behaviors (called self-assembly, self-limiting reaction, and self-alignment) to construct millions -and ultimately billions - of tiny, virtually identical nanostructures to receive, store, and deliver electrical energy.

"These devices exploit unique combinations of materials, processes, and structures to optimize both energy and power density—combinations that, taken together, have real promise for building a viable next-generation technology, and around it, a vital new sector of the tech economy," Rubloff said.

"The goal for electrical energy storage systems is to simultaneously achieve high power and high energy density to enable the devices to hold large amounts of energy, to deliver that energy at high power, and to recharge rapidly (the complement to high power)," he continued.

Electrical energy storage devices fall into three categories. Batteries, particularly lithium ion, store large amounts of energy but cannot provide high power or fast recharge. Electrochemical capacitors (ECCs), also relying on electrochemical phenomena, offer higher power at the price of relatively lower energy density. In contrast, electrostatic capacitors (ESCs) operate by purely physical means, storing charge on the surfaces of two conductors. This makes them capable of high power and fast recharge, but at the price of lower energy density.

The Maryland research team's new devices are electrostatic nanocapacitors which dramatically increase energy storage density of such devices - by a factor of 10 over that of commercially available devices - without sacrificing the high power they traditionally characteristically offer. This advance brings electrostatic devices to a performance level competitive with electrochemical capacitors and introduces a new player into the field of candidates for next-generation electrical energy storage.

Where will these new nanodevices appear? Lee and Rubloff emphasize that they are developing the technology for mass production as layers of devices that could look like thin panels, similar to solar panels or the flat panel displays we see everywhere, manufactured at low cost. Multiple energy storage panels would be stacked together inside a car battery system or solar panel. In the longer run, they foresee the same nanotechnologies providing new energy capture technology (solar, thermoelectric) that could be fully integrated with storage devices in manufacturing.

This advance follows soon after another accomplishment—the dramatic improvement in performance (energy and power) of electrochemical capacitors (ECC's), thus 'supercapacitors,' by Lee's research group, published recently in the Journal of the American Chemical Society. (Figure 1). Efforts are under way to achieve comparable advances in energy density of lithium (Li) ion batteries but with much higher power density.

"U-Md.'s successes are built upon the convergence and collaboration of experts from a wide range of nanoscale science and technology areas with researchers already in the center of energy research," Rubloff said.

####

About Maryland NanoCenter
Maryland NanoCenter has been established as a partnership among three University of Maryland colleges: The A. James Clark School of Engineering, the College of Computer, Math, and Physical Sciences (CMPS), and the College of Chemical and Life Sciences, with sustaining support from all three and the campus.

Led by founding director Gary W. Rubloff, Electrical and Computer Engineering (ECE) Chair Patrick O'Shea, and Institute for Research in Electroics & Applied Physics (IREAP) Director Daniel Lathrop, Maryland NanoCenter promotes major nano research and education initiatives, provides one-stop shopping for those seeking expertise and/or partnerships at Maryland, and supplies infrastructure to facilitate nano activities at Maryland through equipment, staff support, and informational and administrative functions.

The Research Team

Gary Rubloff is Minta Martin Professor of Engineering in the materials science and engineering department and the Institute for Systems Research at the University of Maryland's A. James Clark School of Engineering. Sang Bok Lee is associate professor in the Department of Chemistry and Biochemistry at the College of Chemical and Life Sciences and WCU (World Class University Program) professor at KAIST (Korea Advanced Institute of Science and Technology) in Korea. Lee and Rubloff are part of a larger team developing nanotechnology solutions for energy capture, generation, and storage at Maryland. Their collaborators on electrical energy storage include Maryland professors Michael Fuhrer (physics), Reza Ghodssi (electrical and computer engineering), John Cumings (materials science engineering), Ray Adomaitis (chemical and biomolecular engineering), Oded Rabin (materials science and engineering), Janice Reutt-Robey (chemistry), Robert Walker (chemistry), Chunsheng Wang (chemical and biomolecular engineering), Yu-Huang Wang (chemistry) and Ellen Williams (physics).

Contacts:
Request Info

Copyright © Maryland NanoCenter

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Possible Futures

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Researchers realize ultra-high precision search for exotic interactions December 3rd, 2021

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Self Assembly

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

3D design leads to first stable and strong self-assembling 1D nanographene wires April 6th, 2021

DNA--Metal double helix: Single-stranded DNA as supramolecular template for highly organized palladium nanowires March 26th, 2021

Advancement creates nanosized, foldable robots March 19th, 2021

Announcements

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Energy

Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021

Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Reaction-dependent coffee-ring-regulating method in spray-coating perovskite November 5th, 2021

A sunny outlook for solar: New research demonstrates great promise of all-inorganic perovskite solar cells for improving the efficiencies of solar cells October 15th, 2021

Automotive/Transportation

Unprecedented view of a single catalyst nanoparticle at work: X-rays reveal compositional changes on active surface under reaction conditions October 1st, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells August 13th, 2021

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

A materials passport for greener batteries: Research project is investigating more environmentally friendly manufacturing and recycling processes October 15th, 2021

New study shows how to power electronics using mechanical motion: Researchers develop a composite film that can be used in nanogenerators to generate electricity from mechanical motion October 1st, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Solar/Photovoltaic

Reaction-dependent coffee-ring-regulating method in spray-coating perovskite November 5th, 2021

A sunny outlook for solar: New research demonstrates great promise of all-inorganic perovskite solar cells for improving the efficiencies of solar cells October 15th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

The National Space Society Joins the Progressive Policy Institute in Supporting Rapid Development of Space Solar Power: Orbiting Solar Power Stations Would Help to Save the Environment August 20th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project