Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NanoCenter Improves Energy Storage Options

Electrostatic nanocapacitors formed in nanoporous anodic aluminum oxide (darker yellow) film by sequential atomic layer deposition of metal (blue), insulator (yellow), and metal. Insert: cross-section of actual structure, represented as rescaled scanning electron micrograph. (A. James Clark School of Engineering, U-Md.)
Electrostatic nanocapacitors formed in nanoporous anodic aluminum oxide (darker yellow) film by sequential atomic layer deposition of metal (blue), insulator (yellow), and metal. Insert: cross-section of actual structure, represented as rescaled scanning electron micrograph. (A. James Clark School of Engineering, U-Md.)

Abstract:
In order to save money and energy, many people are purchasing hybrid electric cars or installing solar panels on the roofs of their homes. But both have a problem—the technology to store the electrical power and energy is inadequate.

NanoCenter Improves Energy Storage Options

College Park, MD | Posted on March 23rd, 2009

Battery systems that fit in cars don't hold enough energy for driving distances, yet take hours to recharge and don't give much power for acceleration. Renewable sources like solar and wind deliver significant power only part time, but devices to store their energy are expensive and too inefficient to deliver enough power for surge demand.

Researchers at the Maryland NanoCenter at the University of Maryland, College Park, have developed new systems for storing electrical energy derived from alternative sources that are, in some cases, 10 times more efficient than what is commercially available. The results of their research are available in the latest issue of Nature Nanotechnology.

"Renewable energy sources like solar and wind provide time-varying, somewhat unpredictable energy supply, which must be captured and stored as electrical energy until demanded," said Gary Rubloff, director of the University of Maryland's NanoCenter. "Conventional devices to store and deliver electrical energy - batteries and capacitors - cannot achieve the needed combination of high energy density, high power, and fast recharge that are essential for our energy future."

Researchers working with Professor Rubloff and his collaborator, Professor Sang Bok Lee, have developed a method to significantly enhance the performance of electrical energy storage devices.

Using new processes central to nanotechnology, they create millions of identical nanostructures with shapes tailored to transport energy as electrons rapidly to and from very large surface areas where they are stored. Materials behave according to physical laws of nature. The Maryland researchers exploit unusual combinations of these behaviors (called self-assembly, self-limiting reaction, and self-alignment) to construct millions -and ultimately billions - of tiny, virtually identical nanostructures to receive, store, and deliver electrical energy.

"These devices exploit unique combinations of materials, processes, and structures to optimize both energy and power density—combinations that, taken together, have real promise for building a viable next-generation technology, and around it, a vital new sector of the tech economy," Rubloff said.

"The goal for electrical energy storage systems is to simultaneously achieve high power and high energy density to enable the devices to hold large amounts of energy, to deliver that energy at high power, and to recharge rapidly (the complement to high power)," he continued.

Electrical energy storage devices fall into three categories. Batteries, particularly lithium ion, store large amounts of energy but cannot provide high power or fast recharge. Electrochemical capacitors (ECCs), also relying on electrochemical phenomena, offer higher power at the price of relatively lower energy density. In contrast, electrostatic capacitors (ESCs) operate by purely physical means, storing charge on the surfaces of two conductors. This makes them capable of high power and fast recharge, but at the price of lower energy density.

The Maryland research team's new devices are electrostatic nanocapacitors which dramatically increase energy storage density of such devices - by a factor of 10 over that of commercially available devices - without sacrificing the high power they traditionally characteristically offer. This advance brings electrostatic devices to a performance level competitive with electrochemical capacitors and introduces a new player into the field of candidates for next-generation electrical energy storage.

Where will these new nanodevices appear? Lee and Rubloff emphasize that they are developing the technology for mass production as layers of devices that could look like thin panels, similar to solar panels or the flat panel displays we see everywhere, manufactured at low cost. Multiple energy storage panels would be stacked together inside a car battery system or solar panel. In the longer run, they foresee the same nanotechnologies providing new energy capture technology (solar, thermoelectric) that could be fully integrated with storage devices in manufacturing.

This advance follows soon after another accomplishment—the dramatic improvement in performance (energy and power) of electrochemical capacitors (ECC's), thus 'supercapacitors,' by Lee's research group, published recently in the Journal of the American Chemical Society. (Figure 1). Efforts are under way to achieve comparable advances in energy density of lithium (Li) ion batteries but with much higher power density.

"U-Md.'s successes are built upon the convergence and collaboration of experts from a wide range of nanoscale science and technology areas with researchers already in the center of energy research," Rubloff said.

####

About Maryland NanoCenter
Maryland NanoCenter has been established as a partnership among three University of Maryland colleges: The A. James Clark School of Engineering, the College of Computer, Math, and Physical Sciences (CMPS), and the College of Chemical and Life Sciences, with sustaining support from all three and the campus.

Led by founding director Gary W. Rubloff, Electrical and Computer Engineering (ECE) Chair Patrick O'Shea, and Institute for Research in Electroics & Applied Physics (IREAP) Director Daniel Lathrop, Maryland NanoCenter promotes major nano research and education initiatives, provides one-stop shopping for those seeking expertise and/or partnerships at Maryland, and supplies infrastructure to facilitate nano activities at Maryland through equipment, staff support, and informational and administrative functions.

The Research Team

Gary Rubloff is Minta Martin Professor of Engineering in the materials science and engineering department and the Institute for Systems Research at the University of Maryland's A. James Clark School of Engineering. Sang Bok Lee is associate professor in the Department of Chemistry and Biochemistry at the College of Chemical and Life Sciences and WCU (World Class University Program) professor at KAIST (Korea Advanced Institute of Science and Technology) in Korea. Lee and Rubloff are part of a larger team developing nanotechnology solutions for energy capture, generation, and storage at Maryland. Their collaborators on electrical energy storage include Maryland professors Michael Fuhrer (physics), Reza Ghodssi (electrical and computer engineering), John Cumings (materials science engineering), Ray Adomaitis (chemical and biomolecular engineering), Oded Rabin (materials science and engineering), Janice Reutt-Robey (chemistry), Robert Walker (chemistry), Chunsheng Wang (chemical and biomolecular engineering), Yu-Huang Wang (chemistry) and Ellen Williams (physics).

Contacts:
Request Info

Copyright © Maryland NanoCenter

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Possible Futures

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Self Assembly

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Announcements

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Energy

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Automotive/Transportation

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX® to Extend Its FD-SOI Platform and Technology Leadership : GF’s FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Novel MOF shell-derived surface modification of Li-rich layered oxide cathode December 29th, 2017

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Solar/Photovoltaic

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project