Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carbon Nanotube Artificial Muscles for Extreme Temperatures Invented at UT Dallas

A. An artificial muscle strip with no voltage applied.
B. The above artificial muscle strip with 5 kV applied.
C. An artificial muscle strip actuated at 1500 K using 5 kV applied voltage.
A. An artificial muscle strip with no voltage applied. B. The above artificial muscle strip with 5 kV applied. C. An artificial muscle strip actuated at 1500 K using 5 kV applied voltage.

Abstract:
Super-Fast, Strong Artificial Muscles Exploiting a Strange State of Matter

Carbon Nanotube Artificial Muscles for Extreme Temperatures Invented at UT Dallas

Dallas, TX | Posted on March 22nd, 2009

Researchers at the UT Dallas Alan G. MacDiarmid NanoTech Institute have demonstrated a fundamentally new type of artificial muscle, which can operate at extreme temperatures where no other artificial muscle can be used -- from below the temperature of liquid nitrogen (-196° C) to above the melting point of iron (1538° C).

The discovery is reported in the March 20 issue of Science under the title "Giant Stroke, Superelastic Carbon Nanotube Aerogel Muscles."

Once actuated (or put into motion) in a certain direction, these new artificial muscles can elongate 10 times more than natural muscles and at rates 1,000 times higher than a natural muscle. In another direction, when densified, they can generate thirty times the force of a natural muscle having the same cross-sectional area. While natural muscles can contract at about 20 percent per second, the new artificial muscles can contract at about 30,000 percent per second.

These artificial muscles are carbon nanotube aerogel sheets made by a novel solid-state process developed at UT Dallas. Aerogels are comprised mostly of air. The starting material is an array of vertically aligned carbon nanotubes manufactured by decomposing hydrocarbons. Because of the special arrangement of these nanotube arrays, which are called forests because they look like a bamboo forest, the carbon nanotubes can be pulled into sheets at speeds of up two meters per second. The sheets have such low density that an ounce would cover an acre.

When scientists apply a voltage to the carbon nanotube aerogel sheets, the nanotubes push away from one another, which in effect works the muscle. These transparent sheets have strange properties that are important for muscle operation. While having about the density of air, in one direction, they have higher specific strength (strength/density) than a steel plate. When stretched in another direction, they provide rubber-like stretchability, but by a mechanism quite different than for ordinary rubber. Because of their nanoscale and microscale structure, they amplify a percent stretch in the nanotube orientation direction to a 15 percent lateral contraction.

"Our discovery of methods for producing these carbon nanotube sheets, their strange properties, and their corresponding remarkable performance as artificial muscles is just the beginning of a story, which will likely be taken in new directions by researchers around the world," said Dr. Ray H. Baughman, one of the article's authors, who is the Robert A. Welch Professor of Chemistry and director of the NanoTech Institute. "My guess is that this story will have a happy ending in terms of new products that benefit humankind."

The ability to either permanently or reversibly tune the nanotube sheet density by using artificial muscles to expand it, and the ability to change the shape of the sheet will likely provide the earliest applications of this technology. Due to their extremely light weight and variable density, carbon nanotube aerogels may become highly desired for use in artificial muscles and solar cells. The conductive properties of these nanotube aerogels, along with their ability to drastically expand their surface area, can improve solar cells by making them more efficient at collecting energy from the sun.

In addition, because no other artificial muscle can actuate at such extreme low and high temperatures, applications for these muscles might develop for use in space exploration, where a hostile environment prohibits use of any other actuating material.

The described breakthroughs resulted from the diverse expertise of the article's co-authors, who are research scientists affiliated with the NanoTech Institute: Dr. Ali Aliev, Dr. Mikhail Kozlov, Dr. Jiyoung Oh Dr. Yuri Gartstein, Dr. Alexander Kuznetsov, Dr. Shaoli Fang, Dr. Mei Zhang, Dr. Raquel Ovalle, Dr. Márcio Lima, Dr. Alexandre Fonseca, Dr. Anvar Zakhidov, and graduate student Mr. Mohammad Haque and Dr. Ray Baughman.

This research was funded by the Air Force Office of Scientific Research, the National Science Foundation, the Office of Naval Research, the Robert A. Welch Foundation, Honda Corporation, Lintec Corporation and the Brazilian government.

To obtain a copy of the Science article, please contact the journal at (202) 326-6440 or A supplemental information file and figures describing applications evaluations that go beyond the scope of the Science article can also be obtained by emailing

####

About University of Texas Dallas
The University of Texas at Dallas serves the Metroplex and the State of Texas as a global leader in innovative, high quality science, engineering, and business education and research.

The University is committed to (1) producing engaged graduates, prepared for life, work, and leadership in a constantly changing world, (2) advancing excellent educational and research programs in the natural and social sciences, engineering and technology, management, and the liberal, creative, and practical arts, and (3) transforming ideas into actions that directly benefit the personal, economic, social, and cultural lives of the citizens of Texas.

For more information, please click here

Contacts:
Media Contacts
Brandon V. Webb
UT Dallas
(972) 883-2155


Office of Media Relations
UT Dallas
(972) 883-2155

Copyright © University of Texas Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Dr. Ray H. Baughman

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Possible Futures

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project