Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists make quantum leap in developing faster computers

Abstract:
Scientists have created a molecular device which could act as a building block for future generations of superfast computers

Scientists make quantum leap in developing faster computers

Posted on March 20th, 2009

The researchers have created components that could one day be used to develop quantum computers - devices based on molecular scale technology instead of silicon chips and which would be much faster than conventional computers.

The study, by scientists at the Universities of Manchester and Edinburgh and published in the journal Nature, was funded by the European Commission.

Scientists have achieved the breakthrough by combining tiny magnets with molecular machines that can shuttle between two locations without the use of external force. These manoeuvrable magnets could one day be used as the basic component in quantum computers.

Conventional computers work by storing information in the form of bits, which can represent information in binary code - either as zero or one.

Quantum computers will use quantum binary digits, or qubits, which are far more sophisticated - they are capable of representing not only zero and one, but a range of values simultaneously. Their complexity will enable quantum computers to perform intricate calculations much more quickly than conventional computers.

Professor David Leigh, of the University of Edinburgh's School of Chemistry, said: "This development brings super-fast, non-silicon based computing a step closer.

"The magnetic molecules involved have potential to be used as qubits, and combining them with molecular machines enables them to move, which could be useful for building quantum computers. The major challenges we face now are to bring many of these qubits together to build a device that could perform calculations, and to discover how to communicate between them."

Professor Richard Winpenny, of the University of Manchester's School of Chemistry, said: "To perform computation we have to have states where the qubits speak to each other and others where they don't - rather like having light switches on and off.

"Here we have shown we can bring the qubits together, control how far apart they are, and potentially switch the device between two or more states. The remaining challenge is to learn how to do the switching, and that's what we're trying to do now."

####

About Universities of Manchester
The University of Manchester has an exceptional record of generating and sharing new ideas and innovations.

Many of the advances of the 20th century began at the University, such as the work by Rutherford leading to the splitting of the atom and the developments of the world's first modern computer in 1948.

Today, we are one of the world's top centres for biomedical research, leading the search for new treatments for life-threatening diseases. We are also at the forefront of new discoveries in science and engineering.

Contacts:
Deborah Haile
University of Manchester Media Relations Office
0161 275 8387

Copyright © Universities of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission September 11, 2015 September 1st, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Quantum Computing

A little light interaction leaves quantum physicists beaming August 25th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New optical chip lights up the race for quantum computer August 14th, 2015

Quantum computing advance locates neutral atoms August 12th, 2015

Announcements

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Waste coffee used as fuel storage: Scientists have developed a simple process to treat waste coffee grounds to allow them to store methane September 2nd, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic