Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists make quantum leap in developing faster computers

Abstract:
Scientists have created a molecular device which could act as a building block for future generations of superfast computers

Scientists make quantum leap in developing faster computers

Posted on March 20th, 2009

The researchers have created components that could one day be used to develop quantum computers - devices based on molecular scale technology instead of silicon chips and which would be much faster than conventional computers.

The study, by scientists at the Universities of Manchester and Edinburgh and published in the journal Nature, was funded by the European Commission.

Scientists have achieved the breakthrough by combining tiny magnets with molecular machines that can shuttle between two locations without the use of external force. These manoeuvrable magnets could one day be used as the basic component in quantum computers.

Conventional computers work by storing information in the form of bits, which can represent information in binary code - either as zero or one.

Quantum computers will use quantum binary digits, or qubits, which are far more sophisticated - they are capable of representing not only zero and one, but a range of values simultaneously. Their complexity will enable quantum computers to perform intricate calculations much more quickly than conventional computers.

Professor David Leigh, of the University of Edinburgh's School of Chemistry, said: "This development brings super-fast, non-silicon based computing a step closer.

"The magnetic molecules involved have potential to be used as qubits, and combining them with molecular machines enables them to move, which could be useful for building quantum computers. The major challenges we face now are to bring many of these qubits together to build a device that could perform calculations, and to discover how to communicate between them."

Professor Richard Winpenny, of the University of Manchester's School of Chemistry, said: "To perform computation we have to have states where the qubits speak to each other and others where they don't - rather like having light switches on and off.

"Here we have shown we can bring the qubits together, control how far apart they are, and potentially switch the device between two or more states. The remaining challenge is to learn how to do the switching, and that's what we're trying to do now."

####

About Universities of Manchester
The University of Manchester has an exceptional record of generating and sharing new ideas and innovations.

Many of the advances of the 20th century began at the University, such as the work by Rutherford leading to the splitting of the atom and the developments of the world's first modern computer in 1948.

Today, we are one of the world's top centres for biomedical research, leading the search for new treatments for life-threatening diseases. We are also at the forefront of new discoveries in science and engineering.

Contacts:
Deborah Haile
University of Manchester Media Relations Office
0161 275 8387

Copyright © Universities of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Possible Futures

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Quantum Computing

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

Announcements

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project