Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Sencera Demonstrates 8.7% Efficient Thin-Film Silicon Solar Cell – Completes $15.6 Million Equity Funding Round

Abstract:
Sencera, a manufacturer of thin film silicon based photovoltaic modules, has successfully deposited single-junction silicon solar cells with an initial 8.7% sunlight to electricity conversion efficiency under standard test conditions. As a result, the Company has secured the final $5.2 million of a $15.6 million investment from the California based lead investor Quercus Trust.

Sencera Demonstrates 8.7% Efficient Thin-Film Silicon Solar Cell – Completes $15.6 Million Equity Funding Round

Charlotte, NC | Posted on March 19th, 2009

Sencera's solar device efficiency gain was achieved with process and hardware enhancements to its Viper™ platform. The Viper™ is a proprietary, fully automated, Plasma Enhanced Chemical Vapor Deposition (PECVD) manufacturing platform developed entirely at Sencera. Recent innovations on The Viper™ have improved cell absorption of both blue and red light sections of the solar spectrum resulting in the conversion of more light to electricity. "This efficiency milestone validates our manufacturing platform, and our cost model. We intend to expand our present 1MW research capacity to 35 MW annual capacity over the next two quarters," said Dr. Rusty Jewett, Sencera's CEO.

After two rounds of equity financing, Sencera has fully funded the first manufacturing line without incurring debt. Over 75% of the production equipment and process required to manufacture solar modules is the company's proprietary design. Sencera's capital expenditure is less that $1 per Watt of annual production capacity which correlates to a reduction in panel manufacturing costs. According to CFO Britt Weaver, "Sencera's capital requirement to build a factory is less than one-half the cost of competitors. As a result, Sencera is positioned well for long term price volatility in the solar module marketplace."

Initial company plans include production of a 7% efficient, 106 Watt single-junction amorphous silicon module at the company's 35 MW (Megawatt) solar module factory under construction in Charlotte, NC. Future plans include development of a second generation tandem junction module with a targeted stabilized efficiency over 11%. This will increase manufacturing capacity to 50MW without the purchase of additional equipment.

Solar cell performance was independently confirmed by The Uiversity of Delaware's Institute of Energy Conversion, designated in 1992 a University Center of Excellence for Photovoltaic Research and Education by the Department of Energy.

####

About Sencera
Sencera is committed to increasing the adoption and consumption of carbon-neutral Solar Energy by developing processes and products that effectively compete with traditional sources of electrical generation.

Contacts:
Britt Weaver
704.393.1951

Copyright © Sencera

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Thin films

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

New Material Allows for Ultra-Thin Solar Cells August 4th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Energy

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Solar/Photovoltaic

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE