Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sencera Demonstrates 8.7% Efficient Thin-Film Silicon Solar Cell – Completes $15.6 Million Equity Funding Round

Abstract:
Sencera, a manufacturer of thin film silicon based photovoltaic modules, has successfully deposited single-junction silicon solar cells with an initial 8.7% sunlight to electricity conversion efficiency under standard test conditions. As a result, the Company has secured the final $5.2 million of a $15.6 million investment from the California based lead investor Quercus Trust.

Sencera Demonstrates 8.7% Efficient Thin-Film Silicon Solar Cell – Completes $15.6 Million Equity Funding Round

Charlotte, NC | Posted on March 19th, 2009

Sencera's solar device efficiency gain was achieved with process and hardware enhancements to its Viper™ platform. The Viper™ is a proprietary, fully automated, Plasma Enhanced Chemical Vapor Deposition (PECVD) manufacturing platform developed entirely at Sencera. Recent innovations on The Viper™ have improved cell absorption of both blue and red light sections of the solar spectrum resulting in the conversion of more light to electricity. "This efficiency milestone validates our manufacturing platform, and our cost model. We intend to expand our present 1MW research capacity to 35 MW annual capacity over the next two quarters," said Dr. Rusty Jewett, Sencera's CEO.

After two rounds of equity financing, Sencera has fully funded the first manufacturing line without incurring debt. Over 75% of the production equipment and process required to manufacture solar modules is the company's proprietary design. Sencera's capital expenditure is less that $1 per Watt of annual production capacity which correlates to a reduction in panel manufacturing costs. According to CFO Britt Weaver, "Sencera's capital requirement to build a factory is less than one-half the cost of competitors. As a result, Sencera is positioned well for long term price volatility in the solar module marketplace."

Initial company plans include production of a 7% efficient, 106 Watt single-junction amorphous silicon module at the company's 35 MW (Megawatt) solar module factory under construction in Charlotte, NC. Future plans include development of a second generation tandem junction module with a targeted stabilized efficiency over 11%. This will increase manufacturing capacity to 50MW without the purchase of additional equipment.

Solar cell performance was independently confirmed by The Uiversity of Delaware's Institute of Energy Conversion, designated in 1992 a University Center of Excellence for Photovoltaic Research and Education by the Department of Energy.

####

About Sencera
Sencera is committed to increasing the adoption and consumption of carbon-neutral Solar Energy by developing processes and products that effectively compete with traditional sources of electrical generation.

Contacts:
Britt Weaver
704.393.1951

Copyright © Sencera

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Thin films

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Announcements

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Energy

In-cell molecular sieve from protein crystal February 14th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics' January 28th, 2017

New low-cost technique converts bulk alloys to oxide nanowires January 24th, 2017

Solar/Photovoltaic

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project