Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Sencera Demonstrates 8.7% Efficient Thin-Film Silicon Solar Cell – Completes $15.6 Million Equity Funding Round

Abstract:
Sencera, a manufacturer of thin film silicon based photovoltaic modules, has successfully deposited single-junction silicon solar cells with an initial 8.7% sunlight to electricity conversion efficiency under standard test conditions. As a result, the Company has secured the final $5.2 million of a $15.6 million investment from the California based lead investor Quercus Trust.

Sencera Demonstrates 8.7% Efficient Thin-Film Silicon Solar Cell – Completes $15.6 Million Equity Funding Round

Charlotte, NC | Posted on March 19th, 2009

Sencera's solar device efficiency gain was achieved with process and hardware enhancements to its Viper™ platform. The Viper™ is a proprietary, fully automated, Plasma Enhanced Chemical Vapor Deposition (PECVD) manufacturing platform developed entirely at Sencera. Recent innovations on The Viper™ have improved cell absorption of both blue and red light sections of the solar spectrum resulting in the conversion of more light to electricity. "This efficiency milestone validates our manufacturing platform, and our cost model. We intend to expand our present 1MW research capacity to 35 MW annual capacity over the next two quarters," said Dr. Rusty Jewett, Sencera's CEO.

After two rounds of equity financing, Sencera has fully funded the first manufacturing line without incurring debt. Over 75% of the production equipment and process required to manufacture solar modules is the company's proprietary design. Sencera's capital expenditure is less that $1 per Watt of annual production capacity which correlates to a reduction in panel manufacturing costs. According to CFO Britt Weaver, "Sencera's capital requirement to build a factory is less than one-half the cost of competitors. As a result, Sencera is positioned well for long term price volatility in the solar module marketplace."

Initial company plans include production of a 7% efficient, 106 Watt single-junction amorphous silicon module at the company's 35 MW (Megawatt) solar module factory under construction in Charlotte, NC. Future plans include development of a second generation tandem junction module with a targeted stabilized efficiency over 11%. This will increase manufacturing capacity to 50MW without the purchase of additional equipment.

Solar cell performance was independently confirmed by The Uiversity of Delaware's Institute of Energy Conversion, designated in 1992 a University Center of Excellence for Photovoltaic Research and Education by the Department of Energy.

####

About Sencera
Sencera is committed to increasing the adoption and consumption of carbon-neutral Solar Energy by developing processes and products that effectively compete with traditional sources of electrical generation.

Contacts:
Britt Weaver
704.393.1951

Copyright © Sencera

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Thin films

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

Announcements

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Solar/Photovoltaic

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic