Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Paper electrified by copper particles

Abstract:
The Polymer Chemistry Research Group at the University of Helsinki, Finland, has succeeded in producing nano-sized metallic copper particles.

Paper electrified by copper particles

Helsinki, Finland | Posted on March 17th, 2009

When the size of particles is reduced to a nano-scale (one nanometre being one billionth of a metre), the properties of the material undergo substantial changes. Unlike in bulk materials, in nanoparticles the number of surface atoms is considerably greater than the number of atoms inside the material, which, among other things, makes the melting temperature of nanomaterials very low. With suitable heat treatment (sintering), the particles manufactured by the research group can be made to form electricity-conducting layers and patterns on paper.

The research result is interesting in that polymer-protected metal particles can also be used in various electronics applications: various kinds of intelligent patterns can be printed on paper that, in the future, may replace components such as electronics boards.

The findings were recently reported in an international journal.

The purpose of the research was to test the ability of polymeric and small-molecule compounds that contain amine groups to protect copper nanoparticles during their manufacturing stage. The particles were manufactured with either poly(ethylene imine) (PEI) or tetraethylenepentamine (TEPA) used as protecting compounds. The average size of the particles at room temperature was 8.5 nm (with PEI as the protecting agent) or 19.4 nm (with TEPA as the protecting agent). Slightly oxidised at their surface, the particles were sintered to the paper surface, and the electrical conductivity of the layer thus formed was measured. Particles manufactured using PEI released the protective agent during sintering at relatively low temperatures (150-200 °C). At these temperatures, the size of the particles increased rapidly. The electrical conductivity of the sintered particles was good, which makes them promising materials for use in electronics printed on paper.

At the University of Helsinki, a research group led by Professor Heikki Tenhu synthesises the so-called intelligent polymers and studies controlled polymerisation reactions. Polymers are large-molecule compounds that, as functional materials, change their properties according to the changing ambient conditions.

####

About University of Helsinki
The Laboratory of Polymer Chemistry at the University of Helsinki is part of the Academy of Finland Centre of Excellence named Functional Materials. The CoE's objects of research include high-quality niche products for replacing the bulk products being abandoned by the paper and packaging industry, integrated product applications and medicinal product and food packages for the health care industry, and multimedia applications of the printing and communications industry.

Contacts:
Professor Heikki Tenhu

358-919-150-334
University of Helsinki

Minna Meriläinen
Press Officer
+358 9 191 51042

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Possible Futures

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Printing/Lithography/Inkjet/Inks/Bio-printing

Basque researchers turn light upside down February 23rd, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Printing Flexible Graphene Supercapacitors December 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project