Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tracking Individual Particles: Electrochemical technique follows the motion of individual microparticles in space and time

Abstract:
Many bacteria are able to "swim" through liquids by means of a flagellum. When doing this, some bacteria follow attractants, some flee from harmful substances, and others align themselves using light, gravity, or magnetic fields.

These processes may also play a role in infections. Following a swimming bacterium without influencing its motion is difficult. Nanotechnology researchers are also interested in determining the motion of nanoparticles, which would be useful for the development of nanomotors, for example.

Tracking Individual Particles: Electrochemical technique follows the motion of individual microparticles in space and time

UK | Posted on March 13th, 2009

A team from the Universities of Oxford and Cambridge (UK) has now developed a new, electrochemical method for locating microscale objects as they move through a liquid. As they report in the journal Angewandte Chemie, researchers led by Richard G. Compton were able to use an array of microelectrodes to follow the two-dimensional motion of a tiny, individual basalt sphere in space and time.

The British researchers' new process is based on a simple arrangement of four tiny electrodes (150150 m) at the bottom of a small cell. Each electrode can be addressed individually. In order to demonstrate that their approach works, the researchers carried out experiments with a basalt sphere with a diameter of about 330 m. They used a magnet underneath the base of the cell to move the magnetic basalt sphere. The magnet was positioned by means of a stepper motor.

Inside the cell is a solution containing an electroactive compound. When the sphere comes close to one of the microelectrodes, it gets in the way of the molecules of this compound, which are trying to get to the electrode. This disruption of the diffusion field changes the current response of the electrode. The presence of the sphere is detectable up to a distance of 0.5 mm from the electrode.

The sphere was put into many different positions and the corresponding current response curves of the electrodes were recorded. At the same time, the researchers documented the corresponding positions of the spheres with video. This allowed them to calibrate their measurements so that the position of the spheres could be determined by means of the current response curves of the electrodes.

The researchers would now like to reduce the scale of their technique. They are developing electrode arrays for a spatial resolution at the submicrometer level, which would also allow them to follow significantly smaller particles with sub-microsecond resolution.

Author: Richard G. Compton, University of Oxford (UK), compton.chem.ox.ac.uk/contact/contact.htm

####

For more information, please click here

Copyright © University of Oxford

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Discoveries

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Announcements

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Research partnerships

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project