Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Tracking Individual Particles: Electrochemical technique follows the motion of individual microparticles in space and time

Abstract:
Many bacteria are able to "swim" through liquids by means of a flagellum. When doing this, some bacteria follow attractants, some flee from harmful substances, and others align themselves using light, gravity, or magnetic fields.

These processes may also play a role in infections. Following a swimming bacterium without influencing its motion is difficult. Nanotechnology researchers are also interested in determining the motion of nanoparticles, which would be useful for the development of nanomotors, for example.

Tracking Individual Particles: Electrochemical technique follows the motion of individual microparticles in space and time

UK | Posted on March 13th, 2009

A team from the Universities of Oxford and Cambridge (UK) has now developed a new, electrochemical method for locating microscale objects as they move through a liquid. As they report in the journal Angewandte Chemie, researchers led by Richard G. Compton were able to use an array of microelectrodes to follow the two-dimensional motion of a tiny, individual basalt sphere in space and time.

The British researchers' new process is based on a simple arrangement of four tiny electrodes (150150 m) at the bottom of a small cell. Each electrode can be addressed individually. In order to demonstrate that their approach works, the researchers carried out experiments with a basalt sphere with a diameter of about 330 m. They used a magnet underneath the base of the cell to move the magnetic basalt sphere. The magnet was positioned by means of a stepper motor.

Inside the cell is a solution containing an electroactive compound. When the sphere comes close to one of the microelectrodes, it gets in the way of the molecules of this compound, which are trying to get to the electrode. This disruption of the diffusion field changes the current response of the electrode. The presence of the sphere is detectable up to a distance of 0.5 mm from the electrode.

The sphere was put into many different positions and the corresponding current response curves of the electrodes were recorded. At the same time, the researchers documented the corresponding positions of the spheres with video. This allowed them to calibrate their measurements so that the position of the spheres could be determined by means of the current response curves of the electrodes.

The researchers would now like to reduce the scale of their technique. They are developing electrode arrays for a spatial resolution at the submicrometer level, which would also allow them to follow significantly smaller particles with sub-microsecond resolution.

Author: Richard G. Compton, University of Oxford (UK), compton.chem.ox.ac.uk/contact/contact.htm

####

For more information, please click here

Copyright © University of Oxford

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanomedicine

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIs QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic