Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tracking Individual Particles: Electrochemical technique follows the motion of individual microparticles in space and time

Abstract:
Many bacteria are able to "swim" through liquids by means of a flagellum. When doing this, some bacteria follow attractants, some flee from harmful substances, and others align themselves using light, gravity, or magnetic fields.

These processes may also play a role in infections. Following a swimming bacterium without influencing its motion is difficult. Nanotechnology researchers are also interested in determining the motion of nanoparticles, which would be useful for the development of nanomotors, for example.

Tracking Individual Particles: Electrochemical technique follows the motion of individual microparticles in space and time

UK | Posted on March 13th, 2009

A team from the Universities of Oxford and Cambridge (UK) has now developed a new, electrochemical method for locating microscale objects as they move through a liquid. As they report in the journal Angewandte Chemie, researchers led by Richard G. Compton were able to use an array of microelectrodes to follow the two-dimensional motion of a tiny, individual basalt sphere in space and time.

The British researchers' new process is based on a simple arrangement of four tiny electrodes (150150 m) at the bottom of a small cell. Each electrode can be addressed individually. In order to demonstrate that their approach works, the researchers carried out experiments with a basalt sphere with a diameter of about 330 m. They used a magnet underneath the base of the cell to move the magnetic basalt sphere. The magnet was positioned by means of a stepper motor.

Inside the cell is a solution containing an electroactive compound. When the sphere comes close to one of the microelectrodes, it gets in the way of the molecules of this compound, which are trying to get to the electrode. This disruption of the diffusion field changes the current response of the electrode. The presence of the sphere is detectable up to a distance of 0.5 mm from the electrode.

The sphere was put into many different positions and the corresponding current response curves of the electrodes were recorded. At the same time, the researchers documented the corresponding positions of the spheres with video. This allowed them to calibrate their measurements so that the position of the spheres could be determined by means of the current response curves of the electrodes.

The researchers would now like to reduce the scale of their technique. They are developing electrode arrays for a spatial resolution at the submicrometer level, which would also allow them to follow significantly smaller particles with sub-microsecond resolution.

Author: Richard G. Compton, University of Oxford (UK), compton.chem.ox.ac.uk/contact/contact.htm

####

For more information, please click here

Copyright © University of Oxford

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Discoveries

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Research partnerships

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project